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Abstract

This thesis is concerned with modelling vehicle headways on single and
dual carriageway roads using two component mixture models that are esti-
mated under the Bayesian paradigm. Vehicle headways are described as is
the Bayesian paradigm with brief biographical details of Thomas Bayes. Next
mixture models are defined and three particular models are subject to detailed
analysis : two are taken from the highway engineering literature and in the
light of difficulties encountered with these models a third is proposed by the
author. This latter model is found to perform well when used with both real
and simulated data.

The method of estimation is Gibbs sampling and a full description of this
technique is given beginning with Markov chain Monte Carlo integration of
which Gibbs sampling is an implementation. The data and the author’s own
software used to anaylse this data are detailed. The usual problems of slow
mixing and identifiability are encountered and dealt with.

Bayesian deviance is used to explore model fit and it is found that the
effective number of (model) parameters plays an important role in model be-
haviour. As the effective number of parameters is reduced by the use of highly
informative prior distributions model fit improves initially but worsens after an
optimum number of effective parameters has been reached. As an additional
measure of model performance, in this case in the absence of any competing
model, posterior predictive datasets are used for a qualitative assesment. For
quantative purposes, Mahalonobis’ distance is used in conjunction with the

posterior predictive datasets.

xii



1 Introduction

As pedestrians we have all stood by the side of the road waiting for a suitable gap in
the traffic to allow us to cross. Similarly, as drivers we have waited at uncontrolled
priority junctions until we could make our intended manouevre, e.g. emerge from
a side road onto a main road. The phrase “a gap in the traffic” suggests a spatial
distance between adjacent vehicles but this distance, together with the perceived
speed of the next oncoming vehicle, is used by the motorist/pedestrian to judge if
sufficient time is available for the safe execution of the intended manouevre. This
“time gap” is clearly of vital importance in road safety and highway engineering and
is formally referred to as the time headway between two vehicles. It is defined as
the time between adjacent vehicles passing a fixed point and it is this quantity with

which this project is concerned.

The physical distance or space headway between adjacent vehicles, although
related to the time headway, will not be studied in this project and from now on

the term “headway” will mean the time headway.

The fact that it is necessary to wait at the side of the road, or in a queue of
traffic at a junction, for a suitable “gap” indicates that not all headways are the
same. Further observation reveals that headways are a random variable that can
be modelled statistically and it is this modelling that is the focus of this project.
The importance of time headways in highway engineering is due to the method of
modelling and simulating the behaviour of junctions at the design stage, for new
roads, or assessment stage if existing roads are to be modified. Consider the following
simple example. Suppose a large housing development is to be built adjacent to a
main road with a single access on to the main road in the form of a simple “T”
junction. The behaviour of the junction can be modelled by considering it, in
mathematical terms, as a queueing model. The traffic flow on the main road is

analogous to the server and the queue of vehicles on the side road analogous to the



customers. The probability distribution functions of the headways (h.p.d.f.’s) on
both main road and side road are, then, of great importance. This modelling is very
often carried out using two component mixtures of probability density functions
from the exponential family of distributions. It is almost always carried out by
highway engineers and the method of estimation is usually an ad hoc method. It is
never Bayesian.

The primary area of interest of this project relates to the application of the
Bayesian paradigm to the area of vehicle headway modelling. Until now, frequentist
methodologies have always been used in this field. More specifically, it will be deter-
mined if certain two component mixture models can be used as headway probability

density functions. As a result of this, the following research questions will be asked

e “ Can we usefully apply the Bayesian paradigm to inferences about
these models?” Since the Bayesian paradigm has not yet been applied in
headway modelling, it must be determined if this is, in fact, practically possible

and what advantages it offers.

e “Are these models appropriate?” There have been many different models
used and, clearly, not every model can be examined in this project. However,
three will be chosen and their suitability, or otherwise, for modelling headways

will be put under scrutiny.

e “What problems arise when the Bayesian paradigm is applied?” It
will be demonstrated that numerical difficulties can be encountered but it will

also be shown that techniques exist which can circumvent them.

e “TIs the routine use of these models feasible in highway engineering”
In practise, Bayesian statistics requires its practitioners to use algebraic skills
that most highway engineers have not used since their college days. The

same can be said, in many cases, with respect to computer programming.



This question is concerned with finding a way of allowing highway engineers
to use the Bayesian paradigm without having to do, as they see it, inordinate
amounts of algebra or computer programming. To make this practical requires
a methodology and software which can be reliably used in routine highway
engineering work without presenting the engineer with technical statistical or

computational difficulties.

These questions are dealt with in the rest of this thesis which is divided into

sections as follows:-

Section 2 begins with an account of headway modelling. Some of the head-
way probability distribution functions (h.p.d.f.’s) used by highway engineers are de-
scribed and appropriate references are given. A description of the Bayesian paradigm
begins with historical details of Thomas Bayes. Next, Bayes theorem is explained
and the section concludes with two examples which show how Bayes theorem is

applied to modelling and the numerical complexity that can so easily arise.

Section 3 describes the three models chosen for examination in this thesis.

These are
e The double displaced negative exponential distribution
e The double exponential headway distribution
e The Gamma exponential distribution

The first two, despite having similar names, are quite different and have been taken
from the highway engineering literature. The third is put forward by the author on

the basis of having dealt with the first two.

Section 4 deals with mixture models in general and begins with a formal defi-
nition of a mixture model. The reasons for their use is then described with the aid
of examples and the specific reason for their use in this thesis is given. Finally, the

advantages and disadvantages associated with this type of model are discussed with



flexibility being cited as the main advantage. In terms of disadvantages, the main

focus is on the likelihood function and the issue of identifiability.

Section 5 is a key part of this thesis since it deals with the main computational
technique used to estimate the models involved. The particular technique is Gibbs
sampling, an implementation of Markov chain Monte Carlo integration and in this
section an explanation of the underlying theory is given. Results are derived for
general cases and then in particular for mixture models and the section finishes by

a detailed application of this theory to the actual models used.

Section 6 is divided into two parts. The first part focusses on the data that are
used and describes not only the data but also where and how they were collected.
The second part, concerned with software, begins by identifying the language used
and giving the reason for its choice. The programs written by the author specifi-
cally for use in connection with this thesis are then described. These fall into two
groups with one group carrying out the actual Gibbs sampling and the other being
concerned with what is termed “post-processing”. This latter group assist in the
investigation of such issues as covergence diagnosis, correlation detection and model

comparison.

Section 7 is probably the most important part of the thesis since it deals with
the actual implementation of the methodology and algorithms already described. It
is in this section that the research questions are, in practical terms, asked. It starts

with a preliminary discussion of some of the key issues involved which include

e Prior distributions, initial conditions, constraints and data
e Convergence and correlation issues

e LEssential criteria for a successful run of the Gibbs sampler

Next, each model is considered in turn. It will be shown that the first two models
both have their own distinct disadvantages that render them unsuitable for mod-

elling headways. The model put forward by the author is shown to be useful provided



the problems of identifiability and convergence are dealt with. The methods used
to circumvent these well known difficulties are described in depth. The section ends

with a block diagram summarising the successful modelling strategy.

The next two chapters represent an attempt to add to the growing literature

concerning Bayesian model fit.

Section 8 examines the use of Bayesian Deviance not only as a tool for the
assessment of model fit but also to shed light on the reasons behind the notoriously
poor convergence properties of mixture models. After giving a brief description of
Bayesian Deviance an example is presented which not only shows that informative
priors can be used to improve convergence performance but also indicates that the

degree of parameterisation is crucial in terms of model fit.

Section 9 approaches the problem of Bayesian model comparison by using poste-
rior predictive datasets and Mahalanobis’ distance. A method is proposed whereby
a single model can be examined in the absence of any other competing models.

Again, examples are used to demonstrate the principles involved.

Section 10 concludes the main body of the thesis and serves two main functions

e It examines the extent to which, and with what success, the research questions

have been answered.

e [t suggests areas for further research which, if pursued, would be of benefit to

the fields of headway modelling and mixture modelling in general.

The thesis ends with references and an appendix containing items that, although

of interest, were considered better located outside the main body of the thesis.



Originality

A major part of the originality of the research is the application of the Bayesian
paradigm to the field of vehicle headway modelling. As a result of this, other areas

of originality arise, as listed below :-

e A single method of parameter estimation is applied to three different models,

one of which is proposed by the author.

e A natural identifiability constraint is applied to the models via the sampling

algorithm as opposed to using a reparameterisation.
e Bayesian deviance is used to explore the behaviour of a mixture model.

e Posterior predictive datasets are used in conjunction with Mahalanobis dis-
tance to quantatively explore the extent to which the model captures features

of the data.



2 Headway modelling

The purpose of this Section is two-fold. Firstly, headways are considered and work
done on modelling them is discussed. There is, here, a deliberate bias towards
highway engineering. Secondly the Bayesian paradigm is described, and a short

biography of Thomas Bayes is included.

2.1 What is a headway?

Strictly speaking there two type of headways : time headways and space headways.
If we were to take an aerial photograph of a length of highway the distance between
successive vehicles would be the space headway. Time headways, with which we are
concerned, are the time intervals between successive vehicles passing a point on the

highway. This is illustrated in Figure 1 below :-

o

[
Fixed point

T=t

i |,

|
Fixed point

Figure 1: A time headway

The upper part of the diagram shows two vehicles travelling from right to left.
The event of the saloon car passing the fixed point is deemed to have taken place at
time T = 0. At a time t seconds later, the minibus now passes the same fixed point

as shown in the lower part of the diagram, with the saloon car having travelled “out



of picture”. This time, t seconds, is the headway between the saloon car and the

minibus. All headways referred to in this thesis will be time headways.

2.2 Who models headways?

Light traffic can be modelled by a simple Poisson process which gives rise to a nega-
tive exponential distribution for the vehicle headways. The simplicity of this real-life
situation makes it a good example from a teaching perspective. The Open Univer-
ity course “M245 : Probability and Statistics” (1984) uses free-flowing traffic as an
example of a “familiar random process” in its introductory unit entitled “Chance”.
Although the headway modelling done in this context is, of necessity, elementary it
means that this topic is familiar to many teachers and students of statistics. There
are also, of course, more rigourous analyses in the statistical literature. Two good
examples of this are Miller (1961) and Ashton (1971). Miller proposes what is de-
scribed as a moving queue model in which he considers traffic flow as a queueing
process with the slow vehicles as the service points of the classical queueing model.
More relevant to this thesis is the work of Ashton who gives in-depth consideration
to three models namely the single shifted exponential model, Schuhl’s model (to
be discussed later) and the modified semi-Poisson process. In this latter model the
assumption is made that there exists behind each vehicle a “zone of emptiness” into
which a following vehicle will never enter. The length of this zone, Z, is measured
in seconds and is itself a random variable. A proportion of headways result from
the following vehicle travelling at the edge of this zone with the remainder being
exponentially distributed with a minimum headway of Z. The resulting distribution
function is a two component mixture model. It is interesting to note that Ashton
concludes that, in the case of low traffic flow, this model does not appear to perform
better than single shifted exponential model.

Highway engineers have been involved in headway modelling since its beginning.

(It seems that those who originally built the roads were required, perhaps by accident



rather than design, to take an interest in the finer points of their operation!) As a
result, the majority of papers relating to this subject can be found in the highway
engineering / transportation literature. Partly for this reason, and partly because
the author has worked in traffic management for almost twenty years, the emphasis
of this thesis will be orientated to highway engineering and subsequent discussions

will reflect this.

2.3 Why are headways modelled?

There are two main reasons why headways are modelled. Firstly, we can use a
headway probabilty density function (h.p.d.f.) to model a stream of traffic and then
use quantities such as the mean and variance of this h.p.d.f. to describe aspects of the
flow. E.g., the reciprocal of the mean headway is the average rate of vehicle flow and
the relationship between mean and variance can give an indication of the amount of
congestion present. Secondly, road junctions can be modelled using queuing theory
and in such a situation h.p.d.f.’s become the arrival mechanism (for, say, a minor
road) and the service mechanism (for the major road). Consider the traffic on the
minor (side) road and, in particular, the vehicle at the front of the queue. This
vehicle has to wait until a safe gap appears in the major (main) road traffic flow.
This waiting time is analagous to the length of time a customer in a shop takes
to be served and so is equivalent to the service time. Therefore the h.p.d.f. of the
main road traffic is the service mechanism. Meanwhile, other vehicles are arriving at
the side road and form a queue. This is analagous to a queue of customers waiting
to be served and so the h.p.d.f. of the side road traffic is equivalent to the arrival
mechanism. Examples of this can be found in Ohno & Mine (1979), Troutbeck

(1986) and Troutbeck & Kako (1999).



2.4 Headway modelling in practice

Vehicle headways have been modelled since the 1930’s when traffic levels were very
light by today’s standards and the first model formally proposed was a negative

exponential distribution with p.d.f.

ft) = de™ (t>0) (1)

where 1/) is the mean headway, measured in seconds.

An early justification of the use of this model can be found in Adams (1936)
where the author begins with a simple Poisson process which itself begins with the
consideration of a short time interval, 4¢. The arrival of a vehicle at our fixed point
on the highway is, in this case, assumed to be equally likely in ¢ as in any other
non-overlapping interval of the same length and also independent of an arrival in
any other short interval of time. This is important because other models do not
include these assumptions. For example, consider two short, contiguous and non-
overlapping time intervals (¢,t + 0t) and (¢ + dt,¢ + 2dt). Let Al be the event of an
arrival in (¢,¢+ 0t) and it’s probability be P(A1) and let A2 and P(A2) be similarly

defined. For the Poisson process :-

P(A1) = P(A2) = P(A2|A1)

that is to say, an arrival in (¢, ¢+ dt) does not have any influence on the probability

of an arrival in (¢ 4 dt, ¢ + 20t). Other processes do not have this property i.e.,

P(A2) # P(A2|A1)

in which case the negative exponential model does not apply and other models must
be sought.

Traffic flows, varying in volume from 70 to 1,400 vehicles per hour, were observed
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and then compared to the theoretical distributions. Adams’ own comments were
“The agreement in these and in many other cases is sufficiently good to justify the
working assumption that road traffic is normally a random series” It is, however,
important to realise that the low volumes observed meant that the traffic would
have been in “free flow”. A stream of traffic is said to be in free flow if each vehicle
is proceeding unimpeded by any other vehicle and is, therefore, free to overtake at
will. As the volume of traffic increases, vehicles begin to impede one another and the
flow is said to become congested. Thus congestion is defined as the extent to which
vehicles impede each other. The “bumper to bumper” situation that is commonly
referred to as congestion is more appropriately described as degenerate flow and is
not considered in this thesis since, when this stage is reached, stochastic modelling is
no longer appropriate. It is interesting to note that streets in central London (one of
which was Whitehall) were used to gather observations and that these observations
revealed that the traffic was free flowing. It is difficult to imagine free flowing traffic
in central London today due to the huge increase in traffic volume.

As traffic volumes increased over the years, it became apparent that the negative
exponential distribution was suitable in fewer and fewer cases. In other words, the
assumption of the Poisson process did not apply and other types of model were

needed. In 1955, Schuhl proposed a mixture for h.p.d.f.’s which is defined by :-

i) = phre Mt 0<t<k) @

pAre M 4 (1 — p)hge 22Uk (k< ¢)
This distribution is described by Salter (1974) who states that the first component is
the h.p.d.f. of those vehicles which are in “free- flow” and the second that of vehicles
in congested flow. The weighting parameter, p, is the proportion of the total traffic
volume in “free flow”. Such use of a two component mixture model is now common
with different authors choosing different distributions for each component. Examples

of this are shown in Table 1 below :-
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Author(s) | First Component | Second Component |

Polus (1979) Binomial Binomial

Baras, Downey & Levine (1979) | Shifted Exponential Lognormal

Tamura &Chishaki (1983) Lognormal Lognormal
Katti & Pathak (1986) Shifted Exponential | Shifted Exponential
Griffiths & Hunt (1991) Shifted Exponential | Shifted Exponential

Table 1: Two component h.p.d.f.’s

It can be seen that shifted exponential distributions figure prominently and there

are two basic reasons for this :-
e the relative tractability of these models

e the ease with which samples can be drawn from these distributions for simu-

lation purposes.

Single component shifted exponential distributions have been the subject of Bayesian
analysis and examples of this can be found in Trader (1985), Calabri & Pulcini (1994)
and Madi & Leonard (1996). Such methodology has not yet entered into headway
modelling. Since Bayesian methods seem to have had little impact in highway engi-
neering, we might expect to see, for example, the method of moments or maximum
likelihood being used for parameter estimation. However the use of mixture models
gives rise to computational difficulties for both Bayesian and frequentist alike, the
chief culprit being the complicated shapes of the likelihood functions involved. This
has resulted in various “ad hoc” methods being used, examples of which can be
found in Salter (1974) and in Griffiths and Hunt (1991). In this thesis, however,

Bayesian methodology will be used. Its background is described in the next section.

2.5 The Bayesian paradigm
2.5.1 Thomas Bayes 1702 - 1761

Born in 1702, Thomas Bayes was the eldest child of Joshua and Ann Bayes. Joshua

was a Presbyterian minister and a Fellow of the Royal Society and in both respects
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Thomas was to follow in his father’s footsteps. Although it is not clear when Thomas
was ordained, it is known that by 1731 he was working as a Presbyterian minister
in Tunbridge Wells, Kent. He was elected to the Royal Society in 1742 and his
reputation as a mathematician became considerable. On the 24th of August, 1746,
he entertained William Whiston, a former Lucasian professor of mathematics at
Cambridge University (a post now held by Stephen Hawking), who described Bayes

as “a very good mathematician”.

1702 - 1761

Figure 2: Thomas Bayes

Sometime around 1750, Bayes retired from the ministry but continued to live
in Tunbridge Wells until his death, at the age of fifty nine, on the 17th of April,
1761. He was buried in the cemetary at Bunhill Fields near Moorgate, London. Also
buried there are John Bunyan and Daniel Defoe. Apart from details of his will, in
which he generously provided for friends and relatives, little else is known about the
life of Thomas Bayes.

His contribution to statistics would have been significantly less had it not been
for the actions of one of his friends, Richard Price. Whilst going through Bayes’
papers after his death, Price found an essay entitled “ An essay towards solving a
problem in the doctrine of chance ”. This paper was submitted to the Royal Society
in November 1763 and read at their meeting on the 23rd of December that year.

His paper can be considered as the formal beginning of Bayesian Statistics al-
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though it’s author could never have of dreamed of the impact on the world of statis-
tics it would later have. Today, Bayesian statistics is as widely applied as classical
statistics. Berger (2000) gives an excellent overview of it’s progress, and states that
“It would be hard to find an area of human investigation in which there does not
exist some level of Bayesian work”. This statement is borne out by Bernado, Berger,
Dawid & Smith (1998) who demonstrate the breadth of application that Bayesian
statistics has in practice. Further recent examples of it’s use can be found in the
operations research literature e.g., Krishnan, Ramaswamy, Meyer & Damien (1999),
and the medical literature e.g., Lau, Pathamanathan, Ng, Cooper, Shekan & Griffith
(2000).

It must be said that the Bayesian paradigm does not yet have universal accep-
tance. Gullberg (1997) gives a very brief history of statistics and makes mention of
24 famous mathematicians who have made highly significant contributions to the

development of the subject. Sadly, the name of Thomas Bayes does not appear.

2.5.2 Bayes’ Theorem

The starting point in Bayesian statistics is the idea that probability is “an expression
of degree of belief that an event will occur”. This is known as the subjectivist view
which stands in sharp contrast to the frequentist view which defines the probability
that an event will occur as “the number of favourable outcomes divided by the number
of possible outcomes”. This definition is currently being taught to schoolchildren as
a part of the National Curriculum and is due to Gerolamo Cardamo (1501-1576)
(Gullberg (1997)).

There is still the need, however, to be able express Bayesian concepts in mathe-
matical form and for this we have Bayes’ Theorem which is defined as follows :-

Let A and B be two events with non-zero probability given by Pr(A) and Pr(B)

respectively. Also, let Pr(A|B) be the conditional probability of event A given event
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B and let Pr(B|A) be similarly defined. Bayes’ Theorem states that :-

BJA).Pr(A)
Pr(B) )

pralB) = £

This definition, concerned only with discrete events can modified in order to deal

with distributions, their parameters and sets of observations.

f(D16).-1(0)

f0ID) = =H

(4)

Where f(.) is a probability density function (p.d.f.). In this case, f can be a vector of
parameters from a (p.d.f.) e.g the mean, p, and variance, o2, of a normal distribution
and D represents a set of observations. The remaining terms in this equation are

defined as follows :-

f(0|D) This is the p.d.f. of # conditional upon the observed
data set. In the example above, this could be written as
f(o?, p|D). In general terms, this is called the posterior
distribution because it represents a p.d.f. arrived at after
observations have been made and it is from this p.d.f. that

inferences are made concerning 6

f(D|6) This is the p.d.f. of the data given . That is to say, it is the

likelihood function and is derived from the model being used.

f(D) (D) = J, f(DI0).f(0)do

f(0)  This is called the prior distribution of 6. It represents
an expression of belief about # before any observations

are taken.
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We can summarise Equations 3 & 4 by saying :-
Posterior o« Prior x Likelihood

and so we have a method of converting a likelihood into a posterior belief. Whilst
this is simple enough in theory, in practice the Bayesian statistician is very often
faced with integrals of high dimensionality. The way in which this can arise is be

shown in the following two examples.

2.5.3 Two Simple Examples

Suppose, in a manufacturing process, we wish to model the time interval, ¢, be-
tween breakdowns of a continuously running machine by using a simple negative

exponential distribution, i.e.,

f(t) = xe ™

We wish to make inferences concerning A. Suppose, also, that our prior belief

concerning A is such that our prior distribution is given by :-

f(A) oc @7l

This is a Gamma distribution with mean % and variance

e

5 If we now make

observations t1, s, ..., t; we can express the likelihood function as being :-

which simplifies to :-

L(t) — )\ke—)\E’?_lti

If we now apply the formula Posterior o< Prior x Likelihood, we obtain

F(Alt,ta, .o ty) o NLe=AB o \kemATE it
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which simplifies to :-
FAltr, o, . b)) oc AOT IR ABHEL 1)

The posterior distribution of A is, thus, proportional to a Gamma distribution with
parameters « + k and 3 + XF ¢,

Whilst this example adequately demonstrates the theory it does not give any
indication of the complexity that can arise but if we model ¢ using a Gamma distri-
bution the difficulties soon become apparent.

In such a case :-

Bata—le—,@t

where

[Na) = /OO t e tdt
0

We see, therefore, that I'(«) is merely a normalising constant to ensure that [;° f(¢) =

1. The likelihood function, L(t), is given by :-

ﬁak (H;'C:l ti)a—le—ﬂElleti

L) (@)

Now, if our priors for @ and /3 are proportional to a® 'e*® and 5 'e~% respectively

then, using the same observations as before, we arrive at the following joint posterior

distribution :-
k k
Fla, Blt, ta, ... 1) oc o e BRI 1)1 BT Pi=tit (D () "
1=1
which simplifies to :-
k k
fla, Blti, ta, ... ) oc o le (T ) gortele Pt d (T ()
=1
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To evaluate, say, the marginal posterior distribution of «, we require :-

a—1_,—ba k Na—1
Floltn o ) o0 Ef U=t 0T 1 gorrens ot g
0

(I(e))—"
which gives :-

a® e b (TIF )2 T (ak + c)
(F())~M(Zhoyty + d)okte?

f(a|t17t27 s 7tl€) X

Clearly, this function cannot easily be dealt with and yet it arises out of the use
of a simple Gamma model and the use of simple prior distributions for the model
parameters. There is no reason (except tractability) why conjugate priors should
be used and it may well be that a non-conjugate distribution better expresses our
prior beliefs. (A prior is conjugate if the the posterior distribution belongs to the
same family)

If a model has n parameters, then the dimensionality of the integration is also
n. Whilst this high dimensionality does constitute a problem it is more often the
intractable nature of the integrals that causes difficulties. Techniques do exist,
however, which can overcome these problems although the choice of an appropriate
method may not be straightforward even when the dimensionality of the integral is
relatively low. The method used in the case of high dimensionality is detailed in

Section 5.
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3 The three candidate models

This section briefly describes the three headway models that will be examined. Two
of them are from the highway literature with the third being proposed by the author.
The number of headway models to be found in the literature is, of course, far greater
than three but a balance must be struck between the number of models chosen and
the depth in which they can be analysed.

Also, it is felt that the two chosen models are representative of those used by high-
way engineers in that simple shifted exponential distributions figure prominently.
The model proposed by the author does differ significantly from the other two but
it will be shown that this model is, computationally at least, superior. All three are
two component mixture models with the distributions coming from the exponential
family.

A distribution is said to come from the exponential family if it can be expressed

in the form :-

f(y;0) = aly)b(9)e” ()

In fact, the distributions are gamma distributions but the parameterisations used
are such that the first component in each mixture is an exponential distribution and
in two of the models both components are exponential. The three models to be

considered can be summarised by the following equation :-

0 t < ky,
f(t) = pf(t - klaabﬁl) kl S t < k?a (6)
p-f(t— ko0, B1) + (1 —p).f(t — ko, 0, B2) t> ko

where

ara—1,—pt
o, ) =

and ky > ki > 0. By altering the values of the parameters oy, as, k1 and ko each
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separate distribution is obtained. This is demonstrated in Table 2 below :-

Model a1 | Q9 kl k2
DDNE 11|k |Ek
Schuhl 111101k
Gamma/Exponential | 1 [ay | 0 | 0

Table 2: Headway probability density function parameter values : (DDNE = Double
Displaced Negative Exponential)

3.1 The Schuhl Model

This model, also referred to as the Double Exponential Headway Model, is defined

as follows :-

— Bt k
1) = pBre Pt (0<t<k) o
pBre™ P+ (1 = p)foe” PR (k < 1)

Its use for modelling headways on dual carriageway roads will be examined in this

thesis. Figure 3 below shows a plot of the model in which the parameters are p =

04, 31 = 0.6, B = 0.5 and k = 1.5.

05
0.4
03
0.2\ \
0.1 \
o \-u.__
[n] 2 4 8 8 10 12 14 16 18 20
t(secs)

Figure 3: The Schuhl Model

Having been proposed by Schuhl in 1955, this model appears in Salter (1974) and
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was used, for teaching purposes, in the now defunct Department of Civil Engineering
at The University of Sunderland. It is also discussed by Ashton (1971) and whilst
neither uses Bayesian analysis, a comparison of the two analyses is interesting in that
the two approaches, despite having one similarity, are quite different. Each author
uses an “ad hoc” method but only Ashton gives a full explanation of the difficulties
that arise from the use of the Method of Moments and the method of Maximum
Likelihood. In the case of the former, negative parameter estimates can result for
positive value parameters and the latter can give rise to intractable equations. One
method mentioned by Ashton, though not used, depends upon the assumption that
large headways must belong to the free flowing component of the model used. This
assumption lies behind the method employed by Salter and is also included in the
work done by Wasielewski (1979). The presentation of the algebra is more thorough
in Ashton whose approach concentrates on the methodology. Salter, for example,
uses the letter e to denote the shift of the second component ( as opposed to k above)
yet gives a detailed example of the graphical method employed to estimate the model
parameters. It is interesting to note that, in Salter’s example, the model predicts
more headways in the range 0 to 1 second than are actually observed. It will be seen
later that this is often the case in this thesis. Also, Salter goes as far as attaching
realistic interpretations to parameter estimates whereas Ashton does not. This will
be discussed in greater depth later and it will be shown to be somewhat unreliable.
This comparison highlights the difference in approaches of statisticians and highway
engineers : the emphasis of the former is nearly always more methodological whereas
it is computational in the case of the latter. But, perhaps more importantly, it can

be seen that the same difficulties are encountered in both disciplines.

3.1.1 Reason for choice

There are two reasons why the Schuhl model has been included in this study :-

1. It is typical of the type of headway model used by highway engineers.
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2. Tt has been studied by two other authors (Schuhl and Ashton), each using a
different method of estimation. The method of estimation used in this project

will constitute a third, believed by the author to be superior to the other two.

3.2 The Griffiths and Hunt Model

This model is proposed for modelling vehicle headways on single carriageway roads
only. It appears only once in the literature (Griffiths & Hunt,1991), where it is
referred to as the Double Displaced Negative Exponential model (DDNE) and is
defined by :-

f(t) = (8)
pﬁle_ﬁl(t_k) + (1 - p)526—[32(t—k) (k <t)

Figure 4 below shows a plot of the model in which the parameters are p = 0.5, 3,

= 0.5, B = 0.25 and k£ = 1.5. This model is fairly typical of those used by highway

N
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Figure 4: The Griffiths & Hunt Model

engineers in that it is a two component mixture model in which shifted exponentials
feature prominently. There are, however, other factors of interest which justify its

inclusion in this work.
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At the time of writing their paper one of the authors of the paper in which it
appears, J.D. Griffiths, was a professor of mathematics and the other, Dr J.G.Hunt,
was an engineer. This collaboration across the two disciplines, although not unique,
is by no means common and in the results, as one might expect, features of both
can be seen.

In their methodology are several points of note, the first being a constraint placed
on the weighting parameter, p, which is only allowed to take values in the range 0 to
0.5. No reasons are given for this but the use of constraints is commonplace when
Bayesian methodology is applied to mixture models. Usually, however, it is one of
the model parameters that is constrained rather than the weighting parameter. An
important side effect of this is that no realistic interpretation can be inferred from
the estimated values of the model parameter and the use of the model becomes non-
parametric in nature. Another constraint used was that the value of & was never
allowed to be smaller than the smallest observed headway.

Maximum Likelihood techniques and the Method of Moments were tried by
Griffiths & Hunt but did not result in good enough fits between theoretical frequency
and observed frequency of headways and, as a result, a hybrid approach was adopted.
This hybrid method nearly always resulted in values for £ which met the above
constraint. When this was not the case, poor fits resulted and this was blamed
on observers being, in the words of the authors “trigger happy’ and recording very
short headways. Their claim that the model is appropriate for modelling vehicle
headways on single carriageway roads in urban areas will be placed under scrutiny

later in this thesis.

3.2.1 Reason for choice

As with the Schuhl model, there are two reasons why the Griffiths & Hunt model is

included here :-

1. It is, again, typical of the type of headway model used by highway engineers.

23



2. Griffiths & Hunt make significant claims for this model. However, it will be

shown that this model is not suitable for use with vehicle headways.

3.3 The Gamma Exponential Model

This distribution, proposed by the author for modelling headways on dual carriage-
way roads, is defined by :-

6512#12—16—,3215

T'(ay) (t>0) 9)

f(t)=ppe ™ + (1 —p)

Figure 5 below shows a plot of the model in which the parameters are p = 0.3,

61 = 02, 62 = 0.9 and Qg = 3.
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Figure 5: The Gamma Exponential Model

There are two basic reasons why this distribution has been proposed as an h.p.d.f.
Firstly, there is a realistic interpretation for each component. The negative expo-
nential first component models that part of the flow which is in free flow and the
second, gamma, component models the congested part. The weighting parameter,
p, can then be seen as the proportion of the traffic stream which is in free flow.
Each of these distributions has, in the past, been used separately to model a traffic

stream that is either free-flowing or congested (negative exponential for free flowing
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and gamma for congested) and so a mixture of the two seems, at the outset, quite a
reasonable proposition. However, it has been shown that, at least in certain cases, it
is wrong to attach such interpretations to model parameters (Robert & Mengersen,
1997) and the values obtained are merely a means to achieving good model /data fit.

Secondly, there is no discontinuity in the p.d.f. as there is in the case of the
shifted exponential distributions. Later, it will be shown that the shift parameter,
k., proves extremely troublesome in the case of the Schuhl model and so its absence
is, from a computational view point at least, an advantage. It could also be argued
that such a sharp discontinuity is not entirely realistic with the “zone of emptiness”

(Ashton, 1971) being more reasonable.

3.3.1 Reason for choice

Having dealt with the previous two models, the Gamma-Exponential distribution
represents the authors own answer to the difficulties previously encountered. The
model has two components, a simple exponential distribution to represent the free-
flowing part of the flow and a gamma distribution for the congested. Neither com-
ponent contains a shift parameter and this, it will be shown, leads to significant

computational advantages.
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4 Mixture models

This section begins by giving a general definition of a mixture model and moves
on to illustrate their main uses, with the help of examples. The advantages and
disadvantages associated with their use is discussed as is the reason for their use
in this thesis. Mixture models have a wide field of application with their use being
found in areas including medical statistics (Vounatsou & Smith, 1998), (Thompson

et al., 1998) and recidivism studies (Copas & Heydari, 1997).

4.1 What is a mixture model?

Let X be a random variable. The probability density function (p.d.f.) of X, 7(x),

is said to be a finite mixture model if

r(z) = iw £(16) (10)

where

Zi:n w; =1
i=1
and each fi(x|6;) is itself a p.d.f. and is referred to as the i® component of the
mixture. Also, 6; is the parameter, or vector of parameters, associated with this
component and w; is referred to as the weighting parameter.
In practice, the word “finite” is often omitted and this will be case in this thesis.

Robert (1996) expresses the view that it is, strictly speaking, more accurate to

say that we are actually approzimating the true p.d.f. of X to a mixture i.e.
m(z) & 7(z) = > w;. fi(x|6;) (11)
=1

but in this thesis, for the sake of simplicity and clarity, the form of Eqn(10) will be

used.
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wq p

Wa (1 —p)
fi(z[6h) ¢(x]p, 07)
fo(]01) | ox]ps, 03)

'91 (M 1,0 )

'92 (M27U§)

Table 3: Equivalance of parameters

4.1.1 An example

A two component mixture of normal distributions can be written as :-

() = pp(zlu, 07) + (1 = p)p(z|p2, 03)

where

(z—p)?

d(x|p,02) = (2m0%) 7.0 7

Table 3 shows how the terms in Eqn(10) relate to those in this equation given that,

in this case, i = 2.

4.2 Why are mixture models used?
4.2.1 The ’direct’ use of mixture models

Principally, mixtures are used when classical distributions, e.g. normal, poisson,
gamma, binomial etc, cannot adequately model the data observed. A common
instance of this is when the data are multi- modal which may be the case when the
data sampled are composed of two or more sub-populations, each having a different
location.

This phenomenom can be found in zoological surveys as the following example
shows.

Suppose observations are made of the weights (in kilogrammes) of a certain

species of fish. The data, displayed as a histogram, are shown in Figure 6.
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Histogram of data
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Figure 6: Histogram of fish weight data

We can see that a classical distribution is not implied by the shape of the his-
togram which has two modes, one at about 7 or 8 kg, the other at 10kg. The presence
of two modes is often indicative that a two component mixture model would be ap-
propriate. Also, it is often the case that zoological data of this type can be modelled
using normal distributions (Titterington et al., 1983) and so we choose a mixture of

two normal distributions to model the data. Such a mixture is shown in Figure 7.

Mixture of Two Normal Distributions
0.2 -
/‘\.
015 - \
3{!/—_ '.\
0.1 4
f/ !
0.05 / \
':l o T T == 1
i 5 10 15
-0.05 -

Figure 7: A mixture of two normal distributions

The parameter values used here were py = 10, gy = 7, 02 = 03 = 1.25 and p =
0.55. In a case like this there may be biological reasons for interpreting parameter
values in a realistic manner. For example, it may be valid to interpret the value of

p as being the proportion of males in the population. This type of use of mixture
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models is referred to as direct use (Titterington et al., 1983).

The data, however may not always be multimodal. One of the very earliest
uses of mixture models analyses a dataset that has just one mode. The data were
the ratios of forehead breadth to body length for 1000 crabs sampled at Naples by
Professor W.F.R.Weldon and the analysis was carried out by Pearson (1894) who
used the method of moments. This calculation would have been formidable given
that no computing machinery were available at that time. Pearson’s analysis was not
Bayesian but there is one important point about his work : he viewed the presence
of two components as evidence for the existence of two species of crab and so he
interpreted his results in a physical manner and did not view the model parameters

purely in model-fitting terms.

4.2.2 The ’indirect’ use of mixture models

When mixture models are used in a manner that does not seek to assign such physical
interpretations to parameter values, their use is said to be indirect (Titterington et
al., 1983). One example of this is in the treatment of outliers. The contaminated

normal model is defined by :-

m(x) = pd(x|p, 0?) + (1 = p)o(z|p, ko?) (12)
where

(z—p)?

d(x|p, 02) = (2m0?) 7.0 52

and k > 1. Here, the weighting parameter, p, is close to 1 and the two densities
have the same mean. The outliers, or contaminants, have a much larger variance
and can, therefore, have a very significant effect on the inferences drawn from such
a sample of observations. By “separating” the outliers from the correct observations

(in component 1) more accurate inferences are able to be drawn not only concerning
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the data observed but also, if required, the errors made in observation.
Consider the following example. Suppose X is normally distributed with a mean

of 15 and a variance of 2, as shown in Figure 8.

Anormal distribution
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Figure 8: The normal distribution of X

Suppose now that observations of X are made. These observations are composed
of correct observations, which are the majority, and erroneous ones, or outliers,
whose values lie at the extremities of the true distribution of X. When the observed
distribution is plotted the result is a distribution which appears normal but has
heavier tails due to the presence of these outliers. The resulting distribution, which

could be called “true X plus outliers”, is shown in Figure 9.

A contaminated normal distribution
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Figure 9: The distribution of X plus errors

The distribution plotted in Figure 9 can be represented by a two component
mixture of normal distributions as in Equation 12 where p = 0.85, u = 15, o2
= 2 and k£ = 8. In this way it can be seen that the presence of outliers can be

accommodated by the use of mixture models.
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It is, perhaps, worth mentioning another use of mixture models that only occurs
in Bayesian statistics. We have already summarised Bayes’ Theorem by using the

expression
Posterior o« Prior x Likelihood

and, so far, it has always been the case that the mixture is used in the likelihood.
There are times, however, when a mixture model can be used to express our prior
belief concerning a parameter.

Titterington et al. (1983, ppl16 - 20) gives an indication of the many and varied

uses to which mixture models have been put.

4.3 The use of mixtures in this thesis

In most cases where mixtures are used, the data are clearly multimodal which ini-
tially suggests that a mixture model may well be appropriate. In this thesis, however,
mixture models are proposed because it is the prior belief of the experimenter(s) that
the data are drawn from two sub- populations, as described in Section 2. Further-
more, we cannot state that the locations of the components are always well-separated
and thus we have a case which falls outside the usual notion of mixture model es-
timation (Richardson & Green, 1997). We are, in this case, starting with a belief
about the data and using this belief to design the model. Subsequent investigation

and analysis will determine the validity, or otherwise, of this belief.

4.4 The advantages and disadvantages of mixtures
4.4.1 Advantages

Mixture models provide sufficient flexibility to model non-homogenous populations
such as the zoological data previously discussed. We have seen that it is often

the case that a mixture does not simply model the data better than a classical
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distribution, but that the latter cannot model the data at all. But this flexibilty is
not solely possessed by mixtures.

When the underlying probabilistic structure of a data set is too complex to be
modelled by a classical distribution, mixture modelling is not the only answer. Other
methods do exist but are often much more complicated to implement. An example of
this is the non-parametric method of kernel density estimation. The case illustrated

below shows a non-Bayesian estimate, 7(x), of a density.

) 1 & T — T
@)= K( h )

=1
where n is the number of observations, h is a constant known as the bandwidth, z; is
the ith observation and K(.) is a symmetrical probability density function, having
it’s mode at zero. We can see that this is itself a mixture model having equally
weighted components whose number is equal to the number of observations. It is
clear that this approach can, in all cases except the trivial, become very cumbersome
indeed.

We see, therefore, that a combination of flexibilty and computational convenience

(the word “ease” is deliberately avoided) are the chief advantages of mixture models.

4.4.2 Disadvantages

It is, perhaps, worth mentioning that the disadvantages described here are those
which apply irrespective of the method of estimation or the family of distributions
from which the individual components of the mixture are drawn. Issues such as
identifiability, the problem of uncertain component membership and related com-

putational difficulties, so often associated with mixtures, will discussed later.

The Likelihood Function

The likelihood function is important to both Bayesian and frequentist alike. The

latter needs to find the parameter values which maximise it. The former, however,
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must multiply it by the prior distribution and then integrate it to find the poste-
rior distributions of the parameters involved. When mixture models are involved
each of these processes assumes a complexity not encountered when dealing with
the classical distributions. This can be demonstrated by considering a general two
component mixture model :-

Let the mixture model be denoted by

f(x) =pfi(z) + qfo)

where p + ¢ = 1. Suppose, now, that we have observations zi,zs,...x,. The

likelihood function is, then, given by

L, = ﬁ(pflj + (1 = p) f25) (13)

Jj=1

It can be seen that as the number of observations rises, so the complexity of Equation
13 also increases. The data files used in this thesis contain about 200 observations

and we can write the likelihood function in this case as being :-

Lo = (pfia + fon)(pfie + afo2)0fis + afos) - (Pf1200 + ¢f2,200)

It must be remembered that we are, in this case, considering only a two component
mixture : the complexity of the likelihood function would again increase as more

components are added to the model.

The missing data problem

)

Mixture models are an example of a “missing data” problem. The word “missing’
is used in the sense that one item of data is unobserved. The item in question is the
component membership of each observation. This is fundamental to the estimation
of mixtures in as much as if the component membership were known then this

process would be radically different since, given this knowledge, estaimation of the
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model parameters would usually be straightforward. In Section 5 it will be shown

how the Gibbs sampler can be applied to such problems.

Identifiability

Let X € {0,1,2} be a random variable that we wish to model using a mixture of
two binomial distributions, where the parameters of the distributions are 8, and 6,

and the weighting parameter is 7. We can write :-

p(X=0)=7a(1—-0)*+ (1 —7)(1—6)*

and

p(X = 1) = 27Tt91(1 — 91) + 2(1 — 7T)92(1 — 92)

There is a third equation, for p(X = 2), i.e.,

but, since it is dependent on the previous two, it is obviously not independent. There
are, however, three unknowns, i.e. m, #; and 6,. We are left with the situation where
we have three unknowns but only two independent equations. There is, therefore,
insufficient information for the solution of the equations and in such a case the model
is referred to as being non- identifiable

The way in which a two component mixture is affected by this problem can be
illustrated by considering a mixture of two normal distributions as in Equation 14

below :-

m(x) = p(x|p, 07) + (1 — p)¢(z|pa, 03) (14)

Now, let p = 1 — p, i = ps, 02 = 02, py = iy and 02 = o?. If these values are
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substituted into Equation 14, the following is obtained :-

m(2) = p'o(alin. of ) + (1= p)g(luy, 0F) (15)

which gives exactly the same p.d.f. as Equation 14. This effect is common in mixture
models and Diebolt & Robert (1994) state quite bluntly that “Mixture models are

not identifiable”.

Interpretation of parameter values

There is a certain amount of evidence that, in come cases, it is invalid to assign a
realistic interpretation to parameter values (Robert & Mengerson, 1997). However,
the ability to interpret parameters is of sufficient value that attempts to do so will
be made in this thesis.

Given the above, one could easily become pessimistic and conclude that the
disavantages of mixture models outweigh their advantages and reject them as a
worthwhile tool. However, there are techniques that can be used to overcome each
drawback and it will be shown that mixtures are well worth using despite these

difficulties.
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5 Gibbs Sampling for Mixture Models

In Section 2 it was shown how intractable integrals, sometimes of high dimensional-
ity, can arise in Bayesian statistics. It was also stated that techniques exist whereby
the difficulties presented by these integrals can be overcome. A good review of some
of these techniques can be found in Swartz & Evans (1995) although the continual
increase in computational power must be borne in mind when comparing different
methods.

The chosen computational technique for use in this thesis is Gibbs sampling.
There are numerous reasons for its choice and these will be stated later but before
that we will describe those techniques familiarity with which is necessary in order

to understand Gibbs sampling itself.

5.1 Monte Carlo integration

Monte Carlo integration is not new : by the time Hammersley & Handscomb pub-
lished their wide-ranging monograph on the subject in 1964 it was already well
established. It was not, however, until 1971 when it was first used in a Bayesian
context by Stewart & Johnson (1971), although Kloek & van Duk (1978) brought

it to the attention to the wider Bayesian community.
It can be demonstrated with a simple example.

Suppose we wish to evaluate the following integral :-

k = /oo f(z)dx

— 00

We can rewrite this equation as follows :-

k = /OO g(x)@dx

oo g()
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where g(.) is a probability density function. Now,

provided X has the distribution g(z). We now generate a random sample from g(x),
X1, T2, T3, ..., Ty, and for each z; evaluate z; = f(x;)/g(x;). Let the mean of this
sample be denoted by 7. We know that

Z?:l Zj

n

— k almost surely, as n tends to oo.

By the term almost surely we mean that the convergence is stochastic rather than
deterministic.

Although some authors have claimed that Monte Carlo can only ever be a method
of choice for rough estimates of numerical quantities (Kalos & Whitlock, 1986) and
despite the fact that O’Hagan (1987) raises fundamental objections to its use, Monte
Carlo integration does form the basis for techniques very widely used in Bayesian
statistics. However, also fundamental to these techniques is the question of sampling

from a probability density function.

Sampling random variables.

Suppose that X is a random variable whose p.d.f. is f(z) and that we wish to draw
a random sample 1, X2, T3 ... 2, from f(z). There are numerous methods by which
this can be achieved and for any given problem the choice must be made carefully.
It would not be appropriate to detail all current methods but Table 4 below provides
some helpful references.

One method, however, that can be detailed here is that of rejection sampling
since, at this point, we can introduce two important points. If we wish to sample
values from a p.d.f. f(x) or from a distribution that is proportional to f(x) rejection

sampling requires an envelope function g(x) such that, for all x, g(z) > f(z). It
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Author(s) & Date Subject
Hammersley & Handscome, 1964 | Theoretical background to sampling

Kalos & Whitlock, 1986 As above
Gilks, W, 1996 (p79) An introduction to Rejection Sampling
Gilks, W. & Wild, P, (1992) Adaptive Rejection Sampling

Table 4: Sampling references

must also be the case that we can sample from ¢(z), where by this we mean that
we can sample from the distribution with pdf proportional to g(z). The algorithm

for rejection sampling can be written as follows :-

Repeat {
Sample a value Q from g(.)
Sample a value U from a uniform U(0, 1)
if U <= £(Q)/g(Q) then accept Q
}

Until one (Q is accepted
The two points arising from this are

1. We still have to sample from g(x) and, in a sense, we are no further forward

since we have merely substituted g(z) for f(x).

2. Even when this hurdle is overcome, we still have to sample from U(0, 1).

To overcome the first difficulty we have to use a function g(z) such that a method
such as the following can be used. We have already stated that g(z) is proportional

to a p.d.f., i.e.
/ g(x)dr =k where k>1 and g(z) > 0.
Qx

Now, let



and let u be a value sampled from U(0,1). We can sample a value from g(z) by

solving the equation

G(z) = uk

Choosing an appropriate g(x) for a particular f(z) is clearly crucial: not only must
g(x) > f(x), for all x, or else the method will not work but also, for all z, the
ratio f(z)/g(x) must not be too small or only a correspondingly small number of
candidate points will be accepted and the sampling will take longer. Gilks and Wild
(1992) detail a very powerful general method that is valid for a large class of f(x),
and their method was used in this project.

Secondly, we have to sample from U(0,1). In practice, this can be very easily
done by using what is a standard library function of most high level computer
languages. It must be remembered, however, that the values generated here are not
truly random and are described as pseudo-random because they are produced by
deterministic algorithms. A general form of a popular algorithm can be expressed

as follows :-

x; = ax;_1 + ¢ (modulo m)
where m is a large integer and a, ¢, and x; are integers between 0 and m — 1.

(The notation signifies that z; is the remainder when az;_; + ¢ is divided by m.)

The choice of the constants a, ¢ and m is crucial to the success of the algorithm and
this is demonstrated by Kalos & Whitlock (1986). These authors conclude, however,
that sufficient work has been done in this field that the values of these parameters
can be chosen with confidence. A feature of this type of pseudorandom generator
(prn) is that after m steps (at most) the sequence will be repeated and is, therefore,
described as periodic. A full description of prn’s can be found in Hammersley &

Handscome (1964) where the above points are discussed in detail.
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5.2 Markov chain Monte Carlo integration

Perhaps the biggest single development in Monte Carlo integration came about
with the publication of a paper in a journal that is possibly not well known to the
majority of statisticians. In June, 1953 the Journal of Chemical Physics published a
paper entitled “Equation of State Calculation by Fast Computing Machine” by five
physicists one of whom was Edward Teller. (Metropolis, et al., 1953)

In this paper a sample from the required distribution ( known as the target
distribution) is obtained by simulating values from a Markov chain whose stationary
distribution is the target distribution. At first sight this ingenious method seems as if
it ought to be highly complex but the reverse is true. The following explanation of its
operation is based on that contained in Kalos & Whitlock (1986). This explanation,
it should be noted, goes somewhat beyond the original Metropolis algorithm and is

more generalised in its form and is, therefore, more akin to that of Hastings (1970).

Consider a space €2 in which a particle can perform a random walk. Let the posi-
tions of the particle as it performs the random walk be denoted by X, X5, X3,... X,,.
Now, each X;, where 1 < i < n, has it’s own p.d.f. which we will denote by ¢(X;).
Each X is, in stochastic terms, a function of X;_; only and so the random walk is

a regular Markov chain. Therefore, since this is the case, we can state that :-

&(X,) — f(X) as n— o0

where f(X) is the p.d.f. of the particle being at X when the random walk has
reached equilibrium. Now, consider any two arbitrary points in {2 say, X and Y.
Figure 10 may be helpful :-

The random walk is such that the probability of a move from X to Y is exactly
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Figure 10: Two points in space

the same as the reverse move. This can be expressed by the following equation.

KXY)f(Y) = KY[X)f(X)

This relationship is called detailed balance and must be satisfied for this algorithm

to work. The terms are explained below :-

K(X|Y)f(Y) This is probability of the particle moving from Y
to X.

fY) This is the a priori probability of finding the
particle at Y.

K(X|Y) This is the conditional probaility that the
particle will move to X given that it is

currently at Y.
Now, let

K(X[Y) = AX|Y)T(X]Y)

where T'(X|Y) is, theoretically, any p.d.f. If we now sample a value from T'(X|Y)

and accept it with probability A(X|Y), we can progress the random walk on this
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basis.
Let us now consider the limiting, or stationary, distribution of the random walk
by considering a the particle being at the point X after n + 1 moves. There are two

ways this event can happen :-

1. The particle can be at Y, a move can be proposed from T(X|Y) and accepted
with probability A(X|Y"). Since we are considering all Y’s; the expression for
thisis [A(X|Y)T(X|Y)f(Y)dy, i.e., we sum over all Y.

2. Conversely, the particle can already be at X and the proposed move is rejected.

The expression for this is [(1 — A(Y|X))T(Y|X)f(X)dy

We can now write
B(Xnir) = [AXI)TXIY) )y + [(1= A X)) (VX F(X)dy
Since detailed balance holds, expansion and simplification yield the result
O(Xu1) = [ T(VX)F(X)dy
and, because T(Y|X) is a p.d.f., we are left with the important result
P(Xnt1) = f(X)

We have, thus, shown that the stationary distribution of the randon walk, which is
a Markov chain, is f(X) All that is required now is to find a suitable A(X|Y) so

that detailed balance is satisfied. Recall that by this we mean that
AXYTXIY)f(Y) = AY|X)T(V]X) f(X)

since

K(X[Y) = AX|Y)T(X]Y)
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A very common choice is

A(X]Y) = min(1, ¢(X]Y))

where
TY|X)f(X)

1) = T X))

>0
We can now state the algorithm for sampling from f(X) completely :-

1. Choose a suitable proposal distribution, 7'(.|.) Note that the requirement

T(.|.) > f(.) does not apply here, unlike in simple rejection sampling.
2. Choose a starting value, X, for the process.
3. Sample a possible next value for X in this case X/ from T'(X]|X,)
4. Compute ¢(X7|Xo) and, hence, A(X]|Xo)
5. With probability A(X7|X,), set X7 = X, otherwise set X; = X

6. Repeat steps 3, 4 & 5 until the Markov chain reaches equilibrium, but do not

save any simulations.
7. Repeat steps 3, 4 & 5 saving as many simulations as required.

The brevity of the above algorithm conceals the care that must be taken at each

step, the majority of which have their own special difficulties.

e A proposal distribution must be such that it can be sampled from with a
minimum of difficulty but the closer it is to the target distribution then the
quicker the Markov chain will reach it’s state of equilibrium. These two factors

need to be balanced for optimum performance of the algorithm.

e The choice of starting value can be of crucial significance to the success, or
otherwise, of the algorithm. A good strategy is to use several dispersed starting

values and then compare results.
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e At the present time, assessment of when a chain has reached equilibrium is
not a straightforward process. The portion of the chain before equilibrium has
been reached is known as the “burn-in” and it’s length is difficult to determine.
Graphical plots of the output of the chain can be useful and will be used in

this thesis.

e Likewise, the number of values to be saved from a simulated chain is not easy
to determine and, in some cases, it can be helpful to save not every value but

every kth value to minimise the effect of correlation.

The above explanation is necessarily brief but there is a large, and still growing,
literature on the subject and very good detailed discussions on these points can be

found in Gelman (1996), Raftery & Lewis (1996) and Gilks & Roberts (1996).

So far, it has not mattered whether or not the X we have considered is multidi-
mensional : the algorithm holds good for any dimensionality. In practice, however,
we specifically need to consider the case of a multidimensional X and it is also
helpful to modify our notation slightly so that it is in line with the more recent
literature. For the target distribution we will now use 7(.|.) instead of f(.|.), for the
proposal distribution ¢(.|.) instead of T'(.|.) and for the acceptance probability a(.].)
instead of A(.].).

Suppose that the dimensionality of X is h, i.e.

X - {Xl,XQ,Xg, . Xh}

and let

X—i = {X17X27 .- 'Xi—laXi-i-l .- Xh}

i.e. X_; is simply X without X;. Every iteration of the Markov chain consists of A
separate steps each of which update a component, X; of X. Thus, we are treating

each component separately which is clearly easier than considering X as a whole.
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After ¢ such iterations, we can define the state of the Markov chain by

Xt = {Xt,b Xt,?, Xt,37 .- -Xt,h}

Suppose, now, that we have completed ¢ complete iterations and have updated ¢ — 1
components during iteration ¢ + 1, i.e., the next component to be updated is X, ;.

At this point the chain will be in the following state :-

Xt,i—l = {Xt+1,1, Xt—|—1,2 .- -Xt—l—l,i—h Xt,i7 Xt,i—l—l .- -Xt,h}

Next a candidate, Y; is sampled from the proposal distribution

Y ~ Q(Y;|Xt,i, Xt,—i)

Notice that this distribution only generates candidates for the ¢th component and
that it is conditional on the state of X at the “time” of sampling. The candidate is

accepted with probability a(Xi, X _;,Y;) where

7(Yi|X_0)q(Xi|Ys, X)) )

XiaX—iay; - . ]-7
o ) “““( (XX gV X, X

If the candidate is accepted then X, ; is set to Y;. If the candidate is not accepted

then X;;,; is set to X; ;.

5.3 Gibbs sampling

Once again, an important technique has entered statistics from statistical physics.
The heat bath algorithm was used by Geman & Geman (1984) in their work on
image analysis and renamed the Gibbs sampler. Several other papers introduced
the technique into mainstream statistics and Smith & Roberts (1993) provide a
lucid explanation of the algorithm.

In Gibbs sampling all candidate points are accepted because of the choice of
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1.

proposal distribution, i.e.,

Q(Yi|X.ia X—i) = W(Y.z’|X—i)

The right hand side of this equation is referred to as a full conditional distribution
because it is the distribution of the candidate point conditional upon the values of
all the other components of X at the “time” of sampling. This important concept

can, perhaps, best be demonstrated by a simple example.

5.3.1 Full Conditional Distributions

In Section 2.5.3 two examples were used to show how complex integrals routinely
arise in Bayesian statistics. Recall that the second of these examples used a gamma

distribution with scale and index parameters 5 and « respectively. Given a set of

observations (t1,%s...,%;), we arrived at the following joint posterior for o and 3 :-
k k
fla, Bty by, . 1) oc a®le B[] 1)t g e PPt (D (@) 7
=1

where a and b are the prior parameters for o and ¢ and d are those for 5. (Note that
the unsimplified form is used here ; the reason for this will soon become apparent.)
In terms of what has gone before, we can say that X = (5,«). The sampling

proceeds as follows :-

Choose arbitrary starting values for 8 and « and let these be denoted by [

and «y.

We now have to sample a value for f, i.e., we need to sample from 7 (5;|X_g,)
which is equal to m(8;|ap). This distribution, the full conditional distribution
of 1, can be found by substituting oy into the joint posterior for v and [

above, which gives :-

k

F(Bilao,ta,ta, - 1) o< af~te 0 ok (T ;)07 Bt =D (I ()~
i=1
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At this point a “term-by-term” explanation will be helpful :-

al™ ', The value of ay has already been chosen and so this term is a constant.

Now because we can sample from a function which is proportional to a p.d.f,

this term can be ignored.

e b  Because b is also a fixed prior parameter, this term is also fixed and,
for our purposes here, can be ignored.

(TT%_, ¢;)®~'. Again, this is a constant and can be ignored.

(I'(w))~*. Again, a constant.

If we now combine all the remaining terms, we can write
agk+c—1_—B1(Zk_ t;+d
f(ﬂ1|a07t17t27"'7tk) O<610 e Pr(imytitd)

which is a simple gamma distribution whose parameters are agk + ¢ and

We now sample f(f1|ag, t1,t2,...,t) from a distribution that is proportional
to Gamma(agk + ¢, ¥¥_,t; + d) which, given the method proposed by Gilks
& Wild (1992), is quite straightforward. Remember that we can sample from
a function that is proportional to a p.d.f. using this method and it is not

necessary to know the value of the normalising constant.

Lastly, as far as this iteration is concerned, we have to sample a value for o,
i.e., we need to sample from 7(ay|X_,,) which is equal to m(ay|f81). In this
case we substitute a; and [; into the joint posterior but this time we ignore

terms which do not involve ;. We can then write :-

k
floa|Br,ti, ta, ..o tg) o a%_le_balﬁfllk(n tz’)al_l(r(al))_k

=1

Whilst this function is not standard, it can be sampled from without too much
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difficulty.

To continue, we start the cycle at 2. and repeat the process, starting by

sampling from 7(fs|c).

It is worth pointing out that all we do to find the full conditional distribution
of a parameter is to eliminate from the joint posterior distribution those terms
which do not contain the parameter in question. Note also that the full conditional
distribution (f.c.d.) for each parameter, whilst being different at each iteration, is
of the same form at each iteration. For example, in this case the f.c.d. for ( is
always proportional to a Gamma distribution but with a different parameters at

each iteration.

5.4 Gibbs sampling for mixture models
5.4.1 The missing data structure

We begin by assuming that each observation “belongs to” or is “generated by” a
particular component whether we are using the mixture model parametrically or
otherwise. Suppose, now, that for each observation x; there exists a corresponding
z; whose value indicates the component membership of the observation, as shown

below. If there are k£ components in the mixture, then z is an integer where 1 < z <

k.
Ty, T2, I3, . Tn
oLl
21, 29, Z3, e Zn
Now, let Z = {21, 29, 23, ..., 2, }, and suppose that a two component mixture model

is being used, i.e. £k = 2. Each z can take the value of either 1 or 2. For example, if
we had 10 observations Z could be equal to {1,1,2,2,1,2,1,2,2,1} and this would
mean that observation 1 would belong to component 1, observation 2 would belong

to component 1, observation 3 would belong to component 2 and so on.
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Unfortunately, the vector Z = {z1, 29, 23, ..., 2, } is not observed and is referred

to as the missing data.

5.4.2 Stochastic allocation

At each sweep of the Gibbs sampler observations do need to be temporarily allocated
to a particular component and, since component membership is not observed, it is
done stochastically.

Let I be an indicator variable and suppose, again, that we are using a two

component mixture model defined by :-

m(z) = pfi(z) + (1 = p)fa(2)

If we let I € {1,2} we can say, for an observation, x;, that if I; = 1 then the
observation belongs in the first component and if I; = 2 then it belongs in the
second. To determine the probability of an observation being in component 1 we
proceed as follows :-

We require Pr(I; = 1|z;). From Bayes Theorem, we have

which gives
pfi(z;)
pfi(xi) + (1 —p) fa(x)

It is, perhaps, worth stating that the use of Bayes Theorem is valid here because of

the conditional independence of z; with respect to all the other unknowns.
If we let the RHS of the above equation equal a then we say that we allocate
each z; to the first component with probability a. Before we describe each sweep

(or iteration) of the Gibbs sampler we need, firstly, to be rather more specific in our
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definition of the mixture model involved. Let

m(x) = pfi(x]61) + (1 — p) fo(x[6>)
Also, let the prior distribution for 6; be my(f;) and let the prior distribution for 6,
be mo(02) and for p, mo(p)
Step 1 Choose starting values for all parameters.

Step 2 Using current parameter values, calculate the allocation probability, a, for
each observation and allocate to either component 1 or 2 accordingly. This
will mean that n; observations will be allocated to component 1 and n, to

component 2.

Step 3 Simulate a value of p from it’s full conditional distribution. This will be denoted

by fed(p) and again we use the relationship Posterior oc Prior X Likelihood.

fed(p) oc mo(p) x p™.(1 —p)™.

Step 5 Simulate a value of 6, from it’s fcd.

fed(0y) ocmo(61) x T fi(x161)

xeCy

Here, the notation x € C'; means “ each x that has been allocated to the first
component”. Also, the assumption is that #; is a single parameter and not
a vector. If it were a vector, the fcd of each constituent parameter would be

found by the method previously described.

Step 6 Simulate a value of 6y from it’s fed.

fed(82) o< mo(62) x [ fi(x]62)

x€Cs
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Repeat steps 2 - 6 as required.

5.5 Application to the models used

So far, the variable modelled has been denoted by x. Now, because the discussion
is focused on the actual models used, the variable will be denoted by ¢ since the
quantity modelled is a unit of time. Also, we will use the notation B(a,b) to rep-
resent a beta distribution with parameters a,b and G(c,d) to represent a gamma

distribution with parameters c, d.

5.5.1 The Griffiths and Hunt Model

This model was defined in Section 3 by :-

=1 E<k) (16)
- pBre k) (1 — p)Boe P20 (K <t

~—

Prior Distributions

Table 5 below sets out the prior distributions chosen for the various parameters :-

Parameter | Prior Distribution
p B(, )
B o B e e G(v,9)
)

Ba oc B e ie. G(y.9)
k o k= te vk e, G(O,v

Table 5: Prior distributions for the Griffiths & Hunt model

In Section 7 experimental runs of the Gibbs sampler will be described using

particular values for prior distribution parameter values.

Sampling

After each prior parameter has been given a value, and each model parameter an

initial value, sampling can begin. Each “sweep” of the sampler comprises two main
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steps :-

1. Partition the data into two sub-samples, S| and Sy, each comprising n; and
ng observations respectively. This is achieved by assigning each observation,

t;, to the first sub-sample with probability a where

pPre 1tk
T pBie Bk 1 (1 — p)Bre Ptk

a

If an observation is not assigned to the first component, it is assigned to the

second.

N
°

Sample p from the B(n; + ¢, ny + )

Sample £, from G(ny + v, Eies, t; — nik + 0)

Sample [y from G(ng + 7, Sics,ti — nok + 9)

Sample k from the distribution with density proportional to k%~ exp[—k(v—

nifr — naf2)]  (k < tmin) where ¢y, is the smallest observation.

The sampling distribution for £ has not been described as a gamma distribution
because the coefficient of —k can, under certain circumstances, be less than zero.
This, however, does not require any fundamental change to the sampling procedure,
since samples are obtained using a method similar to that described in Gilks & Wild
(1992).

When examining the fcd’s, it can be seen that when the data do not give any
information about a particular parameter, it is the prior distribution of that param-
eter from which a value is sampled. This entirely consistent with the principles of

Bayesianism and also serves to verify the algebra used to obtain an fed.
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5.5.2 The Schuhl Model

Again, this model was defined in Section 3 by :-

—B1t k
f(t) _ pﬁle ’ (O <t< ) (17)
pbre P + (1 = p)foe R (k < 1)

We see here that this model has at least the possiblility of modal separation.

Prior Distributions

The similarity between the models means that we can give the same prior distribu-

tions to both sets of parameters.

Sampling

Again this is very similar to the Griffith & Hunt case but there are important
differences. In Step 1, the allocation probability, a, is determined as follows :-
Let t,,in2 be the smallest observation in the second component. If ¢; < t,,;,2 then

a= 1. If t; > t,,in2 then the following equation is used :-

_ pPre Pt
 phre Pt 4 (1 — p)fareP2ltih)

a

and Step 2 then proceeds as follows :-
e Sample p from B(n; + ¢, ny + 9)
e Sample f; from G(ny + v, Eies,ti +0)
e Sample By from G(ng + v, Yies,ti +0)

e Sample k from the distribution with density proportional to k’~!exp[—k(v —

n2ﬂ2)] (k < tmin2)a

where tmine 1S the value of the smallest observation in So.

93



5.5.3 The Gamma Exponential Distribution

This distribution, proposed by the author, was defined in Section 3 by :-

632.[:042—16—,3215

T(ay) (t>0)

f(t) =ppie P + (1 —p)

The constraint that as > 1 is imposed on the model.

Prior Distributions

The prior distributions used in Table 6 below :-

Parameter | Prior Distribution
p B(, )
61 G(77 5)
BQ G(G, V)
Qs G(w, k).

Table 6: Prior distributions for the Gamma Exponential model

Sampling

Again at each sweep the sample is partitioned into two sub-samples, S; and Sy by

allocating each observation (indexed by 7) to S; with probability a where

pBePiti

phre=t 4 (1= p) =)

a =

As before S; will contain n; observations and S; will contain ns, and their sums
will be >7;c5, ti and > ;cg, t; respectively. The sampling step can now take place and

is as follows :-
e Sample p from B(¢ + ny, v + no)
e Sample ) from G(y+ni,d + X cq, i)

e Sample 5 from G(6 + asng, v + Yics, ti)
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e Sample ay from the distribution with density proportional to

oy " exp—ank]. 522 (Ties, ti)*2

[T(ag)]"

where ay > 1

It is immediately clear that the fcd of ay is not a standard distribution. However,
its log-concavity is verified by Dey, Kuo & Sahu, (1995) and it is sampled from using
the method of Gilks & Wild (1992).

It should be noted that the above algorithm represents what might be termed
the default algorithm, as far as this model is concerned, in that others will also be
considered. These variants will be described in full in subsequent section since the

point here is solely to illustrate the theory of Gibbs sampling for mixture models.

5.6 Advantages and disadvantages

Mixture modelling is only one use of Gibbs sampling and the following sub-sections
apply to all uses of this technique. It has to be pointed out, however, that the ad-
vantages and disadvantages associated with Gibbs sampling are exaggerated when
mixture models are involved. For instance when the discussion centres on the ne-
cessity of checking for convergence then, in the case of mixture models, even greater

care must be taken with this part of the analysis.

5.6.1 Advantages

The chief advantage of Gibbs sampling is its simplicity. This is largely due to the
fact that the proposal distribution is simply the fcd of the parameter concerned.
This means that the practitioner is not faced with the usual dilemma of McMC of
choosing an appropriate proposal distribution. Also, because all candidate points
are accepted, there is a gain in computational efficiency.

Also, a large number of fcd’s that arise from the use of common models can quite
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easily be sampled from using the method of Gilks & Wild (1992). All the fed’s in
this project were sampled from using this method.

Another advantage of Gibbs sampling is that it is straightforward to obtain
marginal posterior distributions of functions of parameters. Suppose that the model
concerned has two parameters, #; and 5, whose fcd’s are known and whose marginal
posterior distributions are required. Suppose, also, that we require the marginal
posterior distribution of (6, + 6,)?. It can be found by adding just one step to every

sweep of the Gibbs sampler, as shown below :-
e Sample a value for 6; from its fcd and write to file
e Sample a value for 65 from its fcd and write to file
e Compute (6; + 6;)% and write to file

This facet of Gibbs sampling will be used in Section 7 where the means of the two
model components will be calculated and compared at every sweep as sampling
progresses.

Also, although the algebra can sometimes appear complex, there is always one
check that can be applied not only here but in any Bayesian analysis. This is that if
the data do not give any information about a parameter, then what remains is the

prior distribution for that parameter.

5.6.2 Disadvantages

We know that a regular Markov chain converges to its target distribution but it
can be, in practice, difficult to determine when this has actually happened. Also,
it is known that this convergence can be slow to occur when mixture models are
used and that the problem of identifiability gives rise to the phenomenom of “label
switching”, a good description of which can be found in Stephens (2000). Label
switching arises from the non-identifiability of the mixture model. Equations 14

& 15 in Section 4.4.2 were used to show that non-identifiability can give rise to
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the interchangability of component parameters. If, as is the case in the example
given, all the parameters change, then what has effectively happened is that the
components themselves have changed labels. In terms of Gibbs sampling, we can see
the effect of this phenomenom in Figure 20 in Section 7.6.1. where the parameters (3,
and 5 often make co-ordinated “jumps” between different zones of their respective
parameter spaces.

At the present time, there is no universal test that can be applied to all chains and
the process known as convergence diagnostics is still something of an art (Stephens,
2001). A side effect of this is that many computer runs, each generating quite a
lot of data, may need to be made. Although this no longer means that storage
presents a problem, care must be taken in choosing a suitable nomenclature for the

files generated and documentation must be precise.
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6 The data and the software

Having described the theoretical basis for the computational algorithm to be used,
the data that will be subjected to that algorithm and the software that will perform

the computations are now described.

6.1 The data
6.1.1 Data definition

The data consist of vehicle time headways measured in seconds and stored sequen-

tially as an ASCII file. The first ten observations from File 2 are shown below

6.49
2.43
3.73
6.16
6.38
0.70
1.19
5.78
3.68

5.73

Three data files have been used in this project, referred to as Files 1, 2 & 3. The
number of observations in each file are 150, 200 and 205 respectively. The data were

collected at two sites in Sunderland, Tyne and Wear.

6.1.2 Site location

File 1 was collected on a single carriageway local distributor road in a suburb in

the north of the city towards the end of the evening rush hour in July 2000. Files
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2 and 3 were both collected at the same site, but on different days, on a high
speed dual carriageway to the west of the city which connects the city centre to the
motorway and trunk road network as well as acting as a primary distributor. File
2 was collected immediately before the evening rush hour while File 3 was collected

during it.

6.1.3 Method of collection

The data were collected by a single observer seated in a stationary vehicle located
close to the site in question. In the case of Files 2 and 3 the vehicle was located
in a layby at the side of the road. A computer program was used to capture the
time between vehicles observed passing a fixed point. (The program was written in
C and ran on a laptop computer : a listing of the source code can be found in the
Appendix.)

When the first vehicle passes the fixed point the space bar is pressed and timing
begins. (The DOS clock is utilised) When the next vehicle passes, the space bar
is pressed again and the time between these two events is calculated and written
to file. The process is repeated for as long as required and terminates when the
observer presses Ctrl-(). Between events what are actually counted are “ticks” of
the DOS clock. These are then converted to seconds by dividing by 18.5.

It is acknowledged that this method is far from sophisticated and that there are

two main sources of error :-

1. The measurements depend on the reaction time of the observer. This may not
be as significant as first thought since it is the time between successive events
that is being measured and not any measure of “absolute” time at which an

event occurs. In this way errors can cancel out.

2. Since each “tick” of the DOS clock occurs every 1/18.5 of a second, time can

only be measured to an accuracy of 0.05 (2 d.p.) of a second.

This method does, however, have distinct advantages ;-
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1. No specialist equipment is required. Laptop computers are now widely avail-

able to all who would wish to carry out this kind of work.

2. No special skills are needed and a person can be instructed in data gathering

in just a few minutes.

3. Data can be collected very quickly and do not need any “post- processing”

such as may be the case if film or video methods are used.

It is believed that, for the purposes of this project, the advantages outweigh the
disadvantages.
One final point relating to data collection must be made in that issues relating

to health and safety are, of course, important and must not be neglected.

Histograms

Histograms of the three data files are shown below.
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Figure 11: Histogram of File 1

The intervals on the horizontal axis are to be interpreted such that, for example,

the interval labelled “9” contains observations ranging from 9.000 to 9.999. The
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interval labelled “>19” contains all observations greater than or equal to 20.000.
The vertical axis indicates the number of observations in each interval. Thus, in

File 2 below, there are 35 observations recorded in the range 1.0 to 1.999.
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Figure 12: Histogram of File 2

Some may comment that the data of File 2 may be better modelled using a
mixture model with more than two components. From the outset, the number of
components in the models used in this project has been fixed at two. However a
future project could be to investigate the number of components that best fits the

data, possibly using reversible jump McMC methodology.

6.2 The software

6.2.1 Language

With the exception of the data collection program already mentioned all the software
used for the purpose of calculation etc in this project was written by the author using
Delphi for Windows, v1.0. (“Delphi” is a registered trade mark of the Borland
corporation.)

Delphi is a visual programming environment system for Windows. At its very
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Figure 13: Histogram of File 3

simplest this means that the various components of the graphical user interface i.e.,
buttons, edit boxes etc. are placed onto a form (i.e.window) using the “drag and
drop” method. This means that the programmer does not have to write any program
code to position these components and so is free to concentrate on matters such as
sampling algorithms etc. The high level language used by the system is Pascal in
its object oriented form although, in this project, it was only ever necessary to use
Pascal in its basic form.

Although C and its derivatives are currently in vogue, it is very interesting to
note that Peter Norton has stated “ By itself I consider Pascal to be the better
language, cleaner and less error prone;” (Norton, 1987)

Delphi v1.0, like most of its successors was available free of charge on the cover of
a computer magazine. Such are the vagaries of the software industry that a package
sold for £349 in 1995 was given away for free in 1997, with complete documentation.
Under the name Kylix, the package is available for Linux systems. (“Kylix” is a
registered trademark of the Borland corporation)

The software written for this project, with the exception of the data collection

program, divides itself quite naturally into two parts :-
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1. Gibbs sampling programs

2. Post-processing programs

6.2.2 Gibbs sampling programs

Even with the benefit of a visual programming environment, the Gibbs sampling
programs used in this project consisted of well in excess of 2000 lines of code. Al-
though some of this was taken up by the graphical outputs used, it still remains
true that this type of program can be quite complex. As an aid to understanding,

the program can be broken down into three stages :-
1. Input
2. Processing
3. Output

and also expressed in terms of a block diagram as shown below :- In total, three

Initial Prior MO del

Conditions Distributions

Constraints

Gibbs
Sampler

Data /

Posterior
Distributions

Figure 14: Block diagram of the sampling algorithm

Gibbs sampling programs were written :-
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e A single program for both shifted exponential models.
e A program for the Gamma/Exponential Distribution.

e A program for the Gamma/Exponential Distribution that uses “blocking” in

the sampling algorithm.

Figure 15 below shows a screen shot from the last of the above mentioned pro-

grams.
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Figure 15: Screenshot of part of one of the Gibbs sampling programs

Further screenshots and extracts of source code from the above programs can be
found in the Appendix.

Much work with Gibbs samplers is done using standard software such as “BUGS”
(Spiegelhalter et al, 1994) However, it was not found possible to accommodate a
shifted exponential model within the B.U.G.S. package. Having written a program
that could deal with the model it seemed a logical step to carry out two extensions.
Firstly graphical ouput was included and secondly another very similar program to

deal with the Gamma/Exponential model was written.
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6.2.3 Post-processing programs

Again these programs can be divided into three groups :-
1. Further graphical examination of output.
2. Analysis of convergence.
3. Model/data comparison i.e., goodness of fit.

Figure 16 below shows a screen shot from one of the programs from 1) above.
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6.2.4 Software testing

Several of the programs used in this project involve complex procedures such as
Gibbs sampling or matrix inversion and, therefore, testing these programs prior to
use is obviously essential. The design of the programs was modular, that is to say,
each program was composed of a number of functions or procedures, designed to
carry out a specific task, and program execution consisted of each of the functions

or procedures being executed in the correct order. It was, therefore, natural to test
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each module separately to ensure its correct operation before testing the program as
a whole. On occasion this necessitated writing a separate testing program the sole
function of which was to test a single function or procedure. By way of example,
consider the function that returns a single value sampled from a Gamma(a,b) dis-
tribution. A program was written to sample any number of values from any gamma
distribution and write them to file. This program could be run so that, say, 50,000
values were sampled from a Gamma(10,5) distribution. The resulting file could then
be examined to see if the mean and variance of the sampled values were approxi-
mately those of a Gamma(10,5) distribution i.e., 2 and 0.4 respectively. A histogram
of sampled could be plotted and its shape assessed visually. This test procedure was
carried out many times, for Gamma distributions having different parameters and,
after the removal of initial errors, the routine was found to work well.

The program which carried out the estimation of the Gamma/Exponential model
was tested in its complete form by comparing the results it gave with those obtained
when the same data was analysed using the previously mentioned B.U.G.S. package.
The resulting comparison was found to be very good.

Program testing was often time consuming and laborious but its necessity cannot

be overstated

The data and software have now been described. Further screen shots and an
example of source code can be found in the Appendix to this thesis. In the next
Section experimental runs of the Gibbs sampler will carried out and the results will

be discussed.
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7 Implementation : Problems and Solutions

7.1 Introduction

So far, the basic research questions have been asked (Introduction) and the back-
ground to both headway modelling and Bayesian statistics has been outlined (Section
2). The models to be used have been defined (Section 3) and a general treatment
of mixture models has been given (Section 4). The theoretical basis for Gibbs sam-
pling has been described (Section 5) as has the data and software in Section 6. Now
the actual implementation of the algorithms previously discussed is presented and
described.

For each model a number of runs of the Gibbs sampler will be carried out in
order to test the behaviour of that model and the sampler. The problems encoun-
tered will be focussed upon and possible solutions will be proposed. In some cases,
however, it will be shown that none of the proposed solutions bring about a sufficient
improvement in model performance so that use of the model can be recommended.
That is to say, no way was found to fully overcome the difficulties encountered and

the conclusion must be drawn that the model is unsuitable.

7.2 Preliminary considerations

It was pointed out, in the previous section, that the Gibbs sampler has, apart from

the model itself, four “inputs”.
e Prior distributions
e Initial conditions
e Constraints
e Data

Each of these could, theoretically change at each run of the Gibbs sampler but this

is neither necesssary nor appropriate in practice. Each of these remaining inputs is
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discussed below :-

1. Prior distributions For each model parameter the form of the prior dis-
tribution will remain unchanged at each run of the sampler. The values of the
prior parameter values will, in most cases, be such that the prior distributions
will be “mildly informative” except in the case of the parameter p. Here, the
example of Robert & Mengersen (1999) will be followed and a U(0,1) distri-
bution will be used. However, in order to build into the sampling program a
measure of flexibility that may be used in the future, the prior distribution for

p will be expressed as as (¢, 1) where ¢ = = 1.

Prior distributions will be tabulated for each model whereas prior distribution

parameters will be tabulated before each run.

2. Initial Conditions In order to test the robustness of Gibbs sampling to
initial values of parameters, numerous exploratory runs were carried out using
widely varying values of the model parameters. It was found that after a
“burn-in” of 10,000 iterations the effect of the initial values on sampling was
not present and that the sampler had started to move throughout the support
of the posterior distribution. As well as the model parameters themselves, one

other parameter was tested in this manner.

Recall that, in the algorithm used, the data are partitioned at every itera-
tion with each observation being allocated to one of the two components. In
the case of the Schuhl model, the lowest observation allocated to the second

component, denoted by %,,;,2 has two vital functions :-

(a) At the allocation step, if an observation is less than the current value of

tmin2 then that observation is allocated to component 1.

(b) At the sampling step the current value of ¢,,;,2 is the upper limit of the

full conditional distribution of the parameter k.
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A value of t,,;,2 must, therefore, be chosen so that the allocation step of the
very first iteration can be carried out. Again, this was tested using widely
varying values and the result was that the choice of initial value did not af-
fect the sampling outcome, given a “burn- in” of 10,000 iterations. Initial

Conditions will be tabulated for each model.

3. Constraints A constraint is a condition that we apply on the Gibbs sampler
and is really a part of the prior beliefs. When we apply such a constraint we are
stipulating that certain outcomes, which may be parameter posterior values,
have either very low or zero probabilities and thus we are reflecting our prior
beliefs. It will be shown that constraints can have a great influence on the
modelling outcome. They will, therefore, be tabulated and discussed before

each run.

4. Data The data file used could, in theory, affect the choice of prior distri-
bution parameter values or constraint and will be identified before each run.
This is due to the fact that, in this case, prior knowledge exists concerning the

data in terms of where and when it was collected.

7.3 Modelling Outcome
7.3.1 What would be a “successful” outcome?

Having completed a particular run, analysis of the output is required and the success,
or otherwise, of the run is evaluated. At the outset, clarity is needed as to what
constitutes a successful run and consistency is required in terms of measuring it.
Therefore, the basic question needs to be asked “What features do we wish to see
in the output that will cause us to view the run as a success? For the purposes of
this project, if the following features are all present then the run will be deemed a

Success.
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e Unimodal posterior distributions Although the posterior distribution
for a given parameter can sometimes be bimodal, for a given set of prior dis-
tributions, and likelihood, this type of distribution does give rise to difficulties
in practical terms. This is because the mean of such a distribution usually
occurs between two modes at a place where the probability density function
is quite low and, sometimes, at a minimum. This makes such distributions
difficult to summarise as is also the case with distributions which, although
unimodal, have a “ridge”. This particular effect can sometimes be remedied
by a reparameterisation. However, it must be stated that a unimodal poste-
rior distribution of a particular parameter is desirable rather than absolutely
necessary. Also, it will be shown that unimodal posterior distributions are
achievable where multimodality arises from the non-identifiability of the mix-
ture model in question. The requirement here could be stated as being for

distributions with a clear single mode.

e Convergent chains We must be sure that the apparent posterior distribu-
tion for each parameter is, in fact, the stationary distribution for the Markov
chain concerned. This important aspect of Gibbs sampling has considerable
literature devoted to it with Mengersen, Robert & Guihenneuc-Jouyaux (1998)

providing a valuable study.

e Good model fit We obviously require the model to be a good reflection of

the data.

7.4 How do we measure “success”

In order to adopt a consistent approach to evaluating the modelling outcome, we

will use the following methods :-

e Evaluating unimodality The modality of a posterior distribution can be

seen from its graph and so this criterion is easily assessed.
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e Diagnosing convergence Unfortunately there is, to date, no “black box”
method for assessing convergence and diagnosis remains something of an art as
well as a science (Stephens, 2001). That is, there is no algorithm which takes
the sampled chain as its input and generates a “true/false” statement regarding
convergence as its output. The problems here are already well documented
with several authors giving good accounts of the difficulties involved. Gelman
(1996) and Raftery & Lewis (1996) give good descriptions. The particular
difficulties relating to the use of mixture models are described by Brooks (1998)
and it is gratifying to observe similarities between the example used by Brooks
and the cases considered in this project. At this point the chosen convergence

diagnostic will be described.

If the post burn-in chain for a given parameter has reached its stationary
distribution, then all values sampled from it will be from the same distribution.
One method we can use to determine whether or not this has happened is as

follows :-

Suppose there are n values in the sampled chain after the burn-in has been
discarded. We divide this into two sub-samples. The first containing the first
n/2 values and the second containing the last n/2. A simple Kolmogorov-
Smirnov two sample test is applied to determine whether or not the two sub-
samples are drawn from the same distribution. If the test indicates that the two
sub-samples are drawn from the same distribution then the chain is deemed
to have converged. The level of significance was chosen at 1 per cent. There

are two main reasons for using this particular diagnostic :-

1. The test does not depend on the stationary distribution being normal.
This is useful since normality cannot always be guaranteed and this is

true in the cases considered here.

2. There are no significant computational difficulties to be overcome when

using this method.
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Having decided upon a strategy for convergence diagnosis, it was interesting to
discover that this test is almost identical to that proposed by Robert, Ryden
& Titterington (1999). The difference between the two is the way in which
independence, or lack of independence, is dealt with. It is known that samples
generated in McMC are often highly correlated and this is especially true in
the case of mixture models. In this project this problem is dealt with by means

of a technique known as “thinning” which is described by Gelman (1996).

Suppose the sampler is run and a sample of size 50,000 is used. Consider the
chain which is the output for the parameter a,. Figure 17 below shows a plot
of ag; v a1, where i is the iteration number, i.e. i € {0..50,000}. (For

terminology, we shall say that «s is plotted with a “lag” of 1.) The correlation

i A

O(2i- 1

oLy

Figure 17: Autocorrelation plot 1

is evident and the estimated value of the coefficient of correlation, r, is 0.62663.
The test indicates that this chain has not converged. If as is now plotted with
alagof 5 (i.e. ag; v aig;_5 is now plotted) it can be seen, as in Figure 18 below,
that there is visibly less correlation. The value of » was 0.23311 in this case.

If the chained is thinned by a factor of 5, i.e. only every fifth value is accepted
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Figure 18: Autocorrelation plot 2

and all others are discarded, it is found that this thinned chain passes the test
for convergence. The reason for this is that the test for convergence requires
independent observations without any correlation. If correlation is present
then the effective number of independent observations is reduced and, since
the actual number of observations is used, the test is rendered inaccurate. The
effect of thinning is to reduce to zero the discrepancy between the actual and

effective number of observations and, by doing so, restore accuracy to the test.

If s is now plotted with a lag of 1 for the thinned chain, as in Figure 19, it is

apparent that thinning has reduced the correlation. Here, r was found to be

0.23844.

Thus, the relationship between correlation (more accurately referred to as au-
tocorrelation since a parameter co-relates with itself), convergence and thin-
ning is demonstrated. Autocorrelation arises because the sampler only moves
slowly throughout the support of the posterior distribution. For a further

explanation of this phenomena, see Gilks & Robert (1996).
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Figure 19: Autocorrelation plot 3

e Testing model fit For the purposes of this section a straightforward test of
model fit will be used. A histogram of the data will be compared to a histogram
of model simulations. The parameter values used will be the posterior density
means, otherwise known as “plug-in” values, and 50,000 simulations will be
used. Others, e.g. Kass & Raftery (1995) have advocated the use of the
posterior predictive distribution (p.p.d.) to assess model fit and such a method
will be discussed in Section 9 of this project. The reason for using “plug-in”
values here is as follows. At each sweep of the Gibbs sampler values for the
model parameters are sampled which can be expressed as ©; where 7 is the
iteration number and ©; is the vector of parameters, i.e. ©; = {p, 81, B2, as}.
The p.p.d. is created by sampling, at each iteration, a value of ¢ from 7 (¢|©;),
where m(t|.) is the model under consideration. Clearly, at some iterations,
O, will contain parameter values from the tails of their respective posterior
distributions which will give rise to values of ¢ that are also unlikely. Thus,
if the posterior densities are symmetrical, the “most likely model” will be

compared with the data sample. Figure 20 shown below is a typical diagram
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of the type described above.
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Figure 20: An example of a model/data fit diagram

It can be seen from this diagram that the model does not reflect the data very

well, especially in the first two intervals.

7.5 An important distinction

If, after a particular run of the sampler, the posterior distributions are unimodal, the
parameter chains converge and the model adequately reflects the data then it can
be assumed that the choice of model and prior were correct and that the sampling
algorithm has functioned properly. However, if these features are not all present
then careful consideration must be given to the cause and an important distinction
must be made. That is to say, it must be determined if the choice of model and/or
prior has been incorrect or if the sampling algorithm is, in some way, defective.

Remedial action should not be taken on a trial and error basis.
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Parameter | Prior Distribution
P Uniform(0,1)
B x 8] e
B2 x B e
k x kﬂ—le—uk

Table 7: Model parameter prior distributions

7.6 The Griffiths and Hunt model

Recall that this model is defined by :-

F(t) = pBre =R 4 (1 — p)Bre= 10

The prior distributions, which are independent, used for its parameters are shown

in Table 7 . The starting values of the model parameters are also set out in Table 8

Parameter | Starting value
p 0.5
b1 0.2
Ba 0.2
k 0.2

Table 8: Model parameter starting values

7.6.1 The Base Run

In order to demonstrate the type of problems encountered when dealing with mixture
models a run will be carried out, for each model, where no constraints are used. Also,
in the base run, mildly informative priors will be used and their values are set out
in Table 9 Since this model is intended for use on single carriageway roads, File 1

will be used as the data file.

Run Outcome

Figure 21 shows the raw output plots for the model parameters. The iterations 0

to 10,000 form the “burn-in” and 10,001 to 60,000 form the sample. There are two
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Parameter | Value
v 5.0
) 5.0
0 5.0
v 5.0

Table 9: Prior distribution parameter values

10,000 60,000
0 [terations

>

Figure 21: Raw output for base run of Griffiths & Hunt model

obviously noteworthy points :-

e The parameters p, 51, and (5 have clearly not converged to a uni-modal sta-
tionary distribution. Instead, all three parameters alternate between two states
which appear to be related. When p is in its “higher”region, (; is in its “lower”
state and has a relatively low variance but 5 has a much higher variance. This
can be explained by the behaviour of the allocation step described in Section
5. When p is high, a higher proportion of observations are allocated to compo-
nent one : this will mean that there is sufficient information in the sample for
the posterior distribution of 3; to have a low variance. However, component
two will contain relatively few observations and so (5 will be sampled from a

distribution that is much closer to its prior distribution. Recall that the fcd is
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given by :-

fed(Ba) o< T(y 4 ng, Xot; + 6 — nok)

When few components are allocated to component 2 the terms noy, Yot; and
k will be small enough for the prior parameters v and 0 to dominate. When
p is in its “lower” state we see that the reverse in true. In Figure 22 we can
see that each of the posterior distributions of 5, and [y can be viewed as
a superposition of two distributions. In each case, the two distributions are

caused by p being in one of its two states.

e The output for the parameter k, however, behaves quite diffently and £ is the
only parameter that, according to the Kolmogorov-Smirnov Test, converges.
This is because k takes a part of its likelihood from both components and so is
not subject to the same alternating that we see in the behaviour of the other
parameters. The critcal KS value is 1.3238E-2 and Table 10 shows the actual

KS values for the model parameters.

Parameter | K - S value
P 2.6388E-2
5 1.4612E-2
Ba 1.9100E-2
k 4.1403E-3

Table 10: Kolmogorov - Smirnov test values

The bimodality of the parameters p, 8; and 5 can be clearly seen in Figure 22.
It is also apparent which areas of each output give rise to corresponding regions in

the histogram. A table of posterior means and variances is shown in Table 11. It

Parameter | Posterior Mean | Posterior Variance
P 0.47710 0.11243
51 0.43608 0.094821
o 0.40956 0.084553
k 1.21520 6.3105E-2

Table 11: Posterior means and variances
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Figure 22: Marginal posterior distributions

is clear from Table 11 that, particularly in the case of the parameter p, difficulties
arise when attempting to summarise a bimodal posterior distribution.

Also if we plot a graph of f; against [;, where ¢ is the iteration number we
see the relationship between these two parameters during sampling. This type of
graph can be very informative (particularly for demonstrating correlation between
parameters) and will be used again.

There is already sufficient evidence to deem this run a failure but, for the sake
of completeness, a graph of model versus data file is shown in Figure 24.

As expected, the fit is very poor and provides further evidence to support the
assertion that the run has been a failure. The reasons for such a clear failure are
also important and for these it is necessary to look at the model with regard to its
identifiability.

In the base run, there are no constraints applied to the model and so there is
no way the sampler can distinguish between the components. In other words, the
labelling of the two components can be switched quite arbitrarily without any loss

of accuracy. To illustrate the point further, let p =1 —p', 5} = 5, and B = fi.
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Figure 24: Model fit diagram

Suppose we now restate the model as :-

ft) = (1= p")B1e 00 4 pf ghe=Pali=h)

80




It can be seen that we have moved the parameters from one component to the
other but have not altered the model. Thus, there is more than one set of model
parameters that will result in the same likelihood.

If we now look once more at the histograms of the parameter outputs with the
above in mind we can see that they appear to indicate the existence of a single
component but, due to label switching, it is impossible to determine which one. It
is also clear that it would have been completely wrong to have accepted the posterior
mean of p (or any other parameter) in this case, hence the requirement for unimodal

posteriors. We conclude that the run has been a failure.

7.6.2 [y > [

Given the above, it would appear advantageous if we could apply a constraint that
would create a distinction between the two components. The obvious one would
be 8, > (1 but it must be decided how to apply this constraint. The constraint is
applied at the sampling stage by testing, when all the parameters have been sampled
during a given iteration, if the mean of the first component is greater than the mean

of the second. The condition tested for, namely

1 1
—+k>——+k
& B

is equivalent to f#y > ;. If this condition is not met, then all the parameters are
sampled again from the same full conditional distributions. In this way we are
holding the Markov chain at one point before moving it on when the condition is
met. Thus the chain is not violated.

A brief examination of the raw outputs in Figure 25 reveals that the constraint
has had an effect. The parameter p does not move between the two extremes of its
space as before but clearly favours the upper part. Also the parameters 5, and [
show quite different behaviour as sampling progresses. There is no jumping between

two states and the resulting histograms are unimodal as shown in Figure 26.
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Figure 25: Raw outputs for the Griffiths & Hunt model
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Figure 26: Marginal posterior distributions for the Griffiths & Hunt model

A table of posterior means and variances is shown in Table 12
From a point of view of convergence, the results are also interesting and the K-S
values for all parameters are tabulated in Table 13

The values in Table 13 represent an improvement, in terms of covergence, over
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Parameter | Posterior Mean | Posterior Variance
P 0.76246 4.7100E-2
51 0.22619 1.0489E-3
5o 0.63001 1.0403E-1
k 1.21510 6.2957-4

Table 12: Posterior means and variances

Parameter | K - S value
P 2.6388E-2
8 1.4612E-2
5, 1.9100E-2
k 4.1403E-3

Table 13: Kolmogorov - Smirnov test values

the base run but only the parameter k passes the KS test since the critical value
here is 1.3238E-2. If the parameter output chains are thinned by a factor of 5, then
each chain passes the KS test for convergence as demonstrated in Table 14. The
critical value, in this case 2.9603E-2, is not exceeded by any of the parameters and

so the run has satisfied the criterion regarding convergence.

Parameter | K - S value
P 2.6906E-2
8 2.0840E-2
By 1.9265E-2
k 7.5854E-3

Table 14: Kolmogorov - Smirnov test values

Two of the required criteria are now met but has model fit improved? Figure 27
shows the graph of model against data for this run.

We see some improvement here but the fit is still poor even though the marginal
posterior distributions are unimodal and convergence has been achieved. This poor
model fit must, therefore, be attributed to a poor choice of model.

An obvious question must now be answered :- “If this is the case, why are such
claims made for the model by Griffiths € Hunt?”

The answer can be found within their paper where they report that, initially,
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Figure 27: Model fit diagram

their model also exhibited poor model / data fit when estimated using their ad
hoc method. They attribute this to estimated values of k (in their paper, d) being
too small which is in turn attributed to “ rogue values being recorded in observing
very short headways, with observers tending to be a little ’trigger happy’ when using
the event recorders”. The authors circumvent this difficulty by simply removing
headways of less than 0.5 seconds from their data set and re-estimating the model.
In this case the model / data fit is very good. There are, however, no such doubts
concerning the data gathering in this project and we conclude that this model is
not suitable for this particular use. It is possible, however, to offer an explanation
of how increasing the accepted value of k can give rise to better model / data fit.
Figure 28 shows an approximately gamma density representing the data. It can
be seen that by rejecting low headways we truncate the data and remove the left-
hand tail of the gamma density. If we now fit a shifted exponential distribution to
this adjusted data the model / data fit will be much better. It seems that Griffiths &
Hunt were attempting to fit a shifted exponential distribution to data was probably

better modelled by a gamma distribution.

84



data set adjusted shifted
' exponential model

A
f(t)

Viower limit of lower limit of
original data set adjusted data set

Figure 28: The effect of truncating a gamma density

7.6.3 Summary

It has been shown that this model, like all mixtures, carries with it the problem
of identifiability. By using a suitable constraint, this can be overcome as can the
difficulty of slow mixing. Unfortunately poor model fit is still evident and the
conclusion is drawn that this particular model was a poor choice for modelling

headways.

7.7 The Schuhl Model

Brief inspection of the Schuhl model, defined by

=Bt
pPre Pt (0<t<k)
f(t) = (18)
pBre M + (1 = p)faeP0H (K < 1)
gives some optimism since we see immediately that the two components do not share
the same mode and this may enable the sampler to differentiate between the two
components i.e., the identifiability problem found in the Griffiths & Hunt model

may not be present to the same extent with this model. Since the Schuhl model is

proposed for use on roads of more than one carriageway Files 2 & 3 will be used as
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data.

7.7.1 The Base Run : File 2

The prior distributions and their parameters are the same here as in the case of the
Griffiths & Hunt model and, again, no constraints were used.

Run Outcome

As expected, this model does perform better but, as Figure 29 reveals, the sam-

pler still jumps between two states. These “jumps” do not occur with the same

B
0.2}

8,
0.2}

0.4}

& w\\\\\\ SRR . Y ~”~>s:~‘>

000 60,000
0 [terations

v

Figure 29: Raw outputs for the Schuhl model

regularity as in the case of the Griffiths & Hunt model but they still suggest the
same indentifiability problems previously encountered. In this case, however, the
sampler shows a bias towards the second component as can be seen from the output
of the weighting parameter p. Here, the sampler stays longer at the lower end of the
range of p. This is clearly evident when the marginal posterior distributions of the
parameters are examined. These are shown in Figure 30.

A table of posterior means and variances is shown in Table 15
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Figure 30: Marginal posterior distributions for the Schuhl model

Parameter | Posterior Mean | Posterior Variance
P 0.31067 5.6154E-2
51 0.55787 1.3866E-1
o 0.29861 2.6381E-2
k 0.64257 2.1666E-2

Table 15: Posterior means and variances for the Schuhl distribution

Examination of the histograms shows that each of the parameters has a pro-
nounced right hand tail. In the case of p, 5, and f;, each posterior distribution can
be regarded as the superposition of one posterior distribution onto another, with
each one corresponding to a “state” that the sampler spends time in. Consider, for

example, 1, and recall that its full conditional distribution is given by

fed(B1) o< T'(y +ny, Eity +9)

where :-
e v and ¢ are the parameters of the prior distribution for S,

e 1 is the number of observations allocated to component 1 at any given sweep
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of the Gibbs sampler and

e Y,t; is the sum of the observations allocated to component 1 at any given

sweep of the Gibbs sampler.

The posterior distribution of 5; can now be explained as follows :- When, at a given
sweep of the Gibbs sampler, most of the observations are allocated to component 2,
ny and X t; are both small and so the full conditional distribution of 3; will be close
to its prior distribution. This is seen as the right hand part of the bimodal posterior.
On the occasion that component 1 is allocated most of the observations, n; and Xt;
will dominate and, because their individual values are much higher than those of
~v and 6, the resulting full conditional distribution will have a much lower variance
than the prior distribution. This effect is seen as the left hand part of the histogram
of 3. In the majority of iterations, however, most observations are allocated to
component 2 and this is why the left hand part of the histogram dominates in the
cases of the parameters p and [s.

Figure 31, (; v [(9; for all post burn-in iterations, again shows the way in which
the sampler “jumps” between states.

As expected, the parameters p, 51; and fy; fail to converege and in this we see
another similarity to the Griffiths & Hunt model. The shift parameter, k, also
fails the test for convergence but detailed examination of its behaviour reveals a
phenomenom not previously encountered.

Figure 32 shows the marginal posterior distribution of the parameter k£ truncated
such that the range plotted is {0..0.8} and it can be seen that this distribution is
multimodal and although one mode clearly dominates, a further eight modes can be
observed.

There are two factors which contribute to this behaviour :-

1. In this model, k£ only features in the second component and so it takes its

likelihood only from that component. This means that only those observations
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Figure 31: Graph of f1; v [y

k
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Figure 32: The truncated marginal posterior distribution of k

allocated to that component contribute to the full conditional distribution of

k.

2. The lowest observation in the second component becomes the upper limit of
the posterior distribution of £ and this value can change with each iteration of
the sampler. In practise, however, this value remains constant for a number of
iterations before changing. This can be seen from the Figure 33 which plots
the values of the lowest observation in component two for iterations 1 to 500

of the sampler (after burn-in).

The relationship between these two quantities is clearly seen through Figure 34.
We see that t,,;, is not a continuous variable but that it takes set values on the

real line. This causes, in effect, & to have numerous posterior distributions each
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Figure 33: Graph of t,,;, v iteration number
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Figure 34: The parameters t,,;, and k

depending on the current value of t,,;,. This is disturbing since it means that a
uni-modal posterior distribution for k£ can never exist. Thus one of the criteria for
a succesful run can never be met.

Again, however, the question must be asked “ Was it the algorithm, model, prior
distribution, data, or a combination of some or all of these that is responsible for

this effect?” 1t is, perhaps, worthwhile to comment on the above factors individually

e The algorithm Gibbs sampling is the algorithm of choice for this project

and no other will be considered at this time.

We could, as in the case of the previous model, introduce the constraint that
the mean of the first component is always greater than that of the first. Strictly

speaking a constraint such as this forms a part of the prior beliefs but it is
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implemented by amending the sampling algorithm. This would mean sampling
all the parameters, testing for the condition and re-sampling all the parameters
if the condition is not met. It is, perhaps, tempting to shorten this procedure
by only re-sampling the last of the parameters, instead of all of them, until
the condition is met. In this case, the parameter in question is k since the
sampling order is p, 31, f2 and k but careful consideration of the detail of such

a strategy reveals that a major problem can arise.

The condition that we require for this constraint to apply is that

This inequality can be rearranged in several ways but consider the following

Ba — By

h< B2

and also the order in which the parameters are sampled :-

1. Sample p
2. Sample [
3. Sample [y

4. Sample k

We see that when k is sampled §; and 5 have already been sampled and if 5,
is greater than 35 then the condition cannot be met no matter how many times
we sample k. By adopting the method of re-sampling all parameters, we avoid
any difficulties that parameter sampling order can potentially cause. This is,
perhaps, a good example of the care that must be taken when constructing

Gibbs sampling algorithms.

The model It may be that the discontinuity in the model, caused by the

parameter k£ in the second component, renders the model unusable in that
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no method can be found to circumvent the multimodality in the marginal

posterior distribution of k.

e The prior distributions We could use more informative prior distribu-
tions, particularly for the parameter k£ and, if the variance of this particular
prior is small enough, the problem may be circumvented. The difficulty here
is that in making the variance very small, very definite prior knowledge is

implied which may not actually exist.

e The data The data file already used represents fairly light traffic : File 3
is composed of observations recorded during the evening rush hour and so we

might expect the model to behave differently when this data is used.

7.8 Further investigations

Based on the evidence provided by the Base Run a number of exploratory runs of
the Gibbs sampler were carried out. From these, the following conclusions were

drawn :-

e In order to ensure that the parameters p, 5, and (5 have unimodal marginal
posterior distributions, it is necessary to impose the condition that E(C;) >

E(C}), i.e. the mean of the first component is greater than that of the second.

e If informative priors are used for the parameters 5, and 5, then the conver-
gence properties of that particular run will be improved. A satisfactory prior

distribution for these parameters was found to be I'(5,15).

e As the variance of the prior distribution for the parameter k is progressively
reduced, the sampler becomes increasingly likely to become “trapped” at a
random iteration. This causes computer run times to become unacceptably
long. A prior distribution of I'(6,12) was found to have a sufficiently low

variance (0.04167 to 5 d.p.) without causing the sampler to become “trapped”.

Given these conclusions, a run of the Gibbs sampler was carried out as follows :-
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Prior distributions

The prior distributions are the same as those use used in previous runs but the

values of the prior parameters have been changed. These are shown in Table 16.

Parameter | Value
v 5.0
) 15.0
0 6.0
v 12.0

Table 16: Prior distribution parameter values

Starting values

The starting values for the run are shown in Table 17.

Parameter | Starting value
p 0.5
b1 0.2
B2 0.2
k 0.2

Table 17: Model parameter starting values

Constraints

The constraint used was the same as in previous runs, i.e. F(C}) > E(Cs).

Burn-in and sample sizes

The burn -in consisted of 10,000 iterations and the sample 50,000 as before.

7.8.1 Run outcome

The raw outputs from the run are shown in Figure 35.
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Figure 35: Raw outputs for the Schuhl model

It can be seen from Figure 35 that the sampler does not jump from one region
of the parameter space to another and in Figure 36 it can also be observed that the

parameters p, 5, and [, have unimodal marginal posterior distributions.

p
M,

Beta 1
{0..0.5}

Beta 2
{0..1}

{0..1.5}

Figure 36: Raw outputs for the Schuhl model
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Unfortunately, however, the parameter k clearly still has a multimodal marginal
posterior distribution and so one of the criteria for a successful run has not been
met. However, examination of Figure 37 shows that, in spite of this failing, model

fit appears to be quite acceptable.
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Figure 37: Model fit diagram

In addition to satisfactory model fit, the Kolmogorov-Smirnov test reveals that
the sampler has converged. Test values for each parameter are shown in Table 18,

together with the critical value.

Parameter K - S test value

p 6.7840E-3
B 9.2170E-3
By 4.7099E-3
2 7.4953E-3

Critical value 1.3238E-2

Table 18: Kolmogorov - Smirnov test values

Consideration of these results begs the question “ In the light of the other crite-
ria being met, does presence of a single multimodal marginal posterior distribution

necessarily mean that the run must be considered a failure?” In the particular case
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of this specific run the answer would appear to be “No” the answer must be sought
in general terms. A step in this direction would be to repeat this run but with a
different data file such as File 3 which corresponds to a fairly congested stream of

traffic.

Run outcome

The raw outputs for this run are shown in Figure 38 and it can be immediately seen

that there are difficulties present.

-
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v

Figure 38: Raw outputs for the Schuhl model

The parameter p moves between three regions of its parameter space. These
movements are not as distinct as in the case of some other runs and so are not
referred to as “jumps” but their presence still gives rise to an unacceptable marginal
posterior distribution. All the marginal posterior distributions for this run are shown
in Figure 39 and it can be seen that p has a bimodal marginal posterior distribution.

The likely reason for its histogram having two modes as opposed to three is
that the movements between the upper two states are relatively smooth transitions

compared to the movement between the first and middle states. It may be the case
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Figure 39: Marginal posterior distributions for the Schuhl model

that the upper state corresponds only to the right hand tail of the distribution and
so is not an altogether separate region of the parameter space.

A similar problem is encountered in the case of the parameters 5, and 5, where it
appears that both have tails of their marginal posterior distributions corresponding
to a region of thier parameter spaces which is not frequently visited. The overall
effect is similar to that observed in the Base Runs carried out so far, although not as
dramatic. It is, however, the parameter £ that displays the more curious behaviour.
The multimodal nature of its marginal posterior distribution is clearly visible in
Figure 39 and is also apparent if we plot a part of the raw ouput for k£ on a scale of
{0..0.4}. Figure 40 shows the first 25,000 post burn-in iterations plotted in this way
and distinct regions of the parameter space that the sampler moves to are clear.

Examination of Figure 40, however, appears to reveal only four distinct regions of
the parameter space while Figure 39 shows five modes. This is because two regions
are so close that, plotted on the scale {0..0.4}, they appear to merge into one.

It is, perhaps, not surprising that the convergence properties of this run are poor.

The Kolmogorov - Smirnov values are shown in Table 19 and it is clear that the
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Figure 40: Part of the raw output for the parameter k

sampler is far from convergence.

Parameter K - S test value

D 2.0976E-1
B 1.2979E-1
B 1.0225E-1
k 7.4953E-1

Critical value 1.3238E-2

Table 19: Kolmogorov - Smirnov test values

Even if the output files for each parameter are thinned by a factor of 10, there is
little improvement and this in itself is sufficient reason for considering this particular

run a failure even though the model fit, as shown in Figure 41 is quite good.

W Data File

& Model

Figure 41: Model fit diagram
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Finally, as another demostration of the strange behaviour of the parameter k,
Figure 42 shows a graph of k; v k;_; for the above run of the Gibbs sampler. The
briefest inspection of this graph reveals that k& behaves quite differently to any

parameter previously encountered.

-ki

Figure 42: Graph of k; v k;_;

7.8.2 Summary

The Schuhl model performs better than the Griffiths & Hunt model in terms of
reflecting the data used but the parameter k presents a problem that cannot, at
present, be overcome. Not only is there the ever present multimodal marginal pos-
terior distribution for k& which is difficult to summarise but there also exist severe
convergence problems when more congested data is analysed. Whilst some practi-
tioners may choose to use the model in the context of light traffic, and ignore the

multimodality of &, its use with congested streams of traffic is not recommended.
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Parameter | Prior Distribution
P p(0,1)
b1 x 8] e
2 x 33 e P
Qg x ay te rP

Table 20: Prior distributions for the Gamma Exponential model

7.9 The Gamma Exponential Model

Any model now proposed must possess certain properties in order that the previously

encountered problems can be overcome. These are as follows :-

e The model must be of a form such that the identifiability problem encountered
in all mixture models can be dealt with and an advantageous feature of any
proposed model would be that, for at least some parameter values, the modes

of the components are different.

e The fundamental failing of the Schuhl model was the presence of the shift
parameter k£ in one component. No such parameter should be present in any

proposed model.

e In preparation for a future attempt to assign realistic interpretations to pa-

rameter values, the model proposed should have two components

The model proposed by the author, to satisfy all the above requirements, is as follows

6§2ta2_16_’32t

f(t) =ppie P + (1 —p) T ag)

where ay, > 1. The prior distributions used for its parameters are shown in Table
20. The starting values of the model parameters are also set out in Table 21.
7.9.1 The Base Run

We begin the modelling process by running the Gibbs sampler on an unconstrained

model using File 2 as data. Also, mildly informative priors will be used and their
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Parameter | Starting value
P 0.5
b1 0.2
Ba 1.0
Qo 2.0

Table 21: Starting values for the Gamma Exponential model parameters

parameter values are set out in Table 22.

Parameter | Value
5.0
5.0
5.0
5.0
3.0
1.0

T|EIR| D

Table 22: Prior distribution parameter values

Run Outcome

The raw output from the base run is shown in Figure 43. Once again we immediately

p
{0.1}

60,000

0 .
: [terations >

Figure 43: Raw outputs for the Gamma Exponential Model

101



see that use of the unconstrained model gives rise to a difficulty already encountered.
Although not as distinct as in the case of the Griffiths & Hunt model the now familiar
“Sjumps” between states can be observed in the outputs for all parameters and most
clearly for p and ;. The resultant bimodal posterior distributions are clearly visible
in the histograms shown in Figure 44 although in the case of 3; the effect is observed

by way of a very long right tail of the posterior.

{0..1}

Beta 1
[0..3}

Beta 2
{0..3}

Alpha 2
{0..11}

Figure 44: Marginal posterior distributions for the Gamma Exponential model

A table of posterior means and variances is shown in Table 23.

Parameter | Posterior Mean | Posterior Variance
P 0.66036 2.8538E-2
51 0.21062 1.7203E-2
5o 0.92767 8.3508E-2
e 2.7319 5.2348E-1

Table 23: Posterior means and variances

The model/data graph is shown in Figure 45 and it can be seen that the model
appears to reflect the data reasonably in spite of the identifiability problem observed.

The reason for this is that one state dominates, i.e. the sampler spends most of the
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Figure 45: Model fit diagram

time in one zone of the parameter space, and the jumps into a different zone are
infrequent and short lived. Thus, the parameter posterior mean values still provide
a reasonable summary of the posterior distribution.

In addition to the bimodality it can also be seen that in the cases of Sy and ax,
there is another effect that can be observed that has not been encountered before.
Examination of the raw output plots for the two parameters shows that there appears
to be correlation between them. This becomes clear when we plot (35; against aw;
as shown in Figure 46, with both axes representing the range {0..10}. In addition
to this correlation between two parameters, strong autocorrelation is also observed
when parameters are plotted against themselves as described previously. Figure 47
shows the parameter p plotted agianist itself with a lag of 1 and the autocorrelation
is striking, with the value of r being 0.95693. Both axes of Figure 47 represent the
range. {0..1}.

With such a high value for r, combined with the identifiability problem observed,

it is not surpising that the sampled chains did not pass the K-S test for converegence.
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Figure 47: Autocorrelation plot of the parameter p

7.9.2 E(C) > E(C,)

In the case of this model this particular constraint is an expression of prior belief.

The first component, parameterised as a simple exponential distribution, represents
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free-flowing traffic which will inevitably contain some large headways. Salter (1974)
goes as far saying that any headway greater than seven seconds will be from the
free-flowing component. In this project, however, the prior belief will not be so
informative and the condition F(C;) > E(Cs) will be used where E(C}) denotes the
mean of the first component of the model, in this the exponential component, and
E(Cy) is similarly defined.

The prior distributions, starting values and prior distribution parameters are the

same for the base run. The constraint is applied using the method already described.

Run Outcome

The raw ouput from this run is shown in Figure 48

0 .
: lterations >

Figure 48: Raw outputs for the Gamma Exponential Model

It is immediately apparent that there is a significant improvement gained by the
use of this constraint and this is reinforced by inspection of the posterior histograms
which are shown in Figure 49. A table of posterior means and variances is shown in

Table 24

In Figure 49 it can be observed that one of the criteria by which the modelling
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Figure 49: Marginal posterior distributions for the Gamma Exponential model

Parameter | Posterior Mean | Posterior Variance
P 0.66569 1.8468E-2
51 0.18909 5.0767E-2
o 0.95174 6.6663E-2
Qo 2.72840 3.6125E-1

Table 24: Posterior means and variances for the Gamma Exponential model

process is judged, i.e. the presence of unimodal posterior distributions, has been
satisfied.

Another criterion is that of model fit and Figure 50 shows how the model re-
flects the data. Although the model does not reflect the data perfectly, the fit can
still be described as satisfactory and this represents another criterion for successful
modelling met.

Unfortunately, however, convergence remains a problem and it can be seen from
Table 25 that the sampler has not converged.

The maximum allowable value of the K-S statistic, for samples of size 50,000,
is 1.3238E-2 and so it is clearly visible that convergence has not been achieved.

If the output chains are “thinned”, i.e. only every fifth sampled value is saved,
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Figure 50: Model fit diagram

Parameter | K - S value
D 6.1128E-2
8 4.1281E-2
5, 5.4115E-2
k 5.6185E-2

Table 25: Kolmogorov - Smirnov values

then the sample size is reduced to 10,000 and the maximum allowable value of
the K-S statistic is 2.9603E-2. Table 26 shows that even under this condition the

sampler does not converge. So far, two of the three criteria required for a successful

Parameter | K - S value
p 5.7792E-2
5 3.4175E-2
5o 6.0568E-2
k 6.3537E-2

Table 26: Kolmogorov - Smirnov values

modelling outcome have been met but the problem of non-convergence remains.
This particular difficulty is very common when modelling with mixtures and there
are numerous techniques that can be used to overcome it. The two that will be

considered here are the use of a “ Randomly Updated Gibbs Sampler, or R.U.G.S.,
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and a technique known as “Blocking”. A full general treatment of these two updating
schemes is given by Roberts & Sahu (1997). Here an explanation will be given of

how R.U.G.S. and bocking apply in the present modelling context.

7.9.3 R.U.G.S.

The acronym R.U.G.S. stands for Randomly Updated Gibbs Sampler which is also
known as the Random Scan Gibbs Sampler. So far, all sampling has been carried out
in such a manner that at each sweep of the Gibbs sampler the parameters have been
sampled in strict order, ie., p, 81, B2 and ay. This technique is known as a Deter-
ministically Updated Gibbs Sampler or D.U.G.S. and is used in the programs BUGS
and WinBUGS. However, to understand the purpose of R.U.G.S., it is necessary to
recall the conditional nature of the sampling process.

Suppose the sampler is about to make its i*" sweep. The sampling proceeds as

follows :-

1. Sample p; from fed(p|B1i1, fri 1, @2i-1)
2. Sample By, from fed(B1|pi, Bo.io1, X2.i-1)
3. Sample B, from fed(Balpi, B1is a2.i-1)

4. Sample ay; from fed(aslpi, Bri, Ba.i)

In R.U.G.S., however, the order of updating the parameters is chosen at random
at every sweep and this technique has been found to have a bearing on convergence

(Roberts & Sahu, 1997). The algorithm for R.U.G.S. can be expressed as follows :-

REPEAT {
pick a parameter at random
IF the parameter has already been sampled THEN
do nothing

ELSE
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Figure 51: Raw outputs for the Gamma Exponential Model

BEGIN
sample from the fcd of the parameter
mark the parameter as sampled

END

} UNTIL all parameters have been sampled

Run Outcome

The raw output for the Gibbs sampler using R.U.G.S, is shown in Figure 51

There is little difference to be observed between Figures 48 and 51 and this is
also the case when marginal posterior distributions are compared (Figures 49 and
52)

We see, as expected, that the posterior distributions are unimodal and, from
Figure 53, that the model fit is satisfactory. However, the main purpose of this
particular run was to determine if use of the R.U.G.S. algorithm was a useful aid

to convergence. To do this the K-S values need to be examined and they are shown
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Figure 52: Marginal posterior distributions for the Gamma Exponential model

Parameter | Posterior Mean | Posterior Variance
P 0.67088 1.8636E-2
ot 0.18949 5.0876E-2
5o 0.96490 7.0801E-2
e 2.75410 3.8526E-1

Table 27: Posterior means and variances for the Gamma Exponential model

0.2
0.15 - M Data File
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0.02 7

Figure 53: Model fit diagram
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for both the raw and thinned output in Table 28

Parameter | Raw Output | Thinned output
p 2.0462E-2 2.1941E-2
51 1.0207E-2 0.6112-2
Ba 3.1322E-2 3.5429E-2
Qo 3.4449E-2 3.1073E-2
Critical value | 1.3238E-2 2.9603E-2

Table 28: Kolmogorov - Smirnov values for raw and thinned output

Although there has been a clear improvement the sampler does not converge,
even when the thinned chains are used. Furthermore, it can be seen that it is the
parameters of the second component that are, in both the raw and thinned cases, the
furthest from convergence in that their K-S values exceed the critical value by the
greatest amount. This would suggest that any method of improving the performance
of the model in terms of convergence should focus on the second component and its

parameters 35 and .

7.9.4 Blocking

The purpose of the technique known as “blocking” is to sample the parameters of
a particular component from their joint probaility density function. In the second
component of the model under consideration there are two parameters, 5 and s,
and so it required to sample from f(aq, Bo|t1, ..., t;). This operation can be broken
down into two stages as follows :-

Firstly recall that, for events A, B, we have Pr(AAB) = Pr(A) Pr(B|A). Similarly
the joint pdf of two continuous variables z,y can be written f(z,y) = f(z)f(y|x).

In the same way

f(on,B2|t1, .. ,tk) = f(oz2|t1, .. ,tk) X f(ﬁglCYQ,tl, e ,tk)

Now, if our priors for o and 3, are proportional to ¥ 'e=#® and gy~ le¥#2

respectively then, using the same observations as before, we arrive at the following
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joint posterior distribution :-

na n
flas, Bolte, to, ..., ty,) < e Ha?ﬁga?m(ﬂti)a2_1529_16_’82(Elilti+y)(F(OZQ))_M
=1

which simplifies to :-

f(a2,62|t1,t2,... t )O(CVQ 16—na2 Ht ag 1ﬁa2n2+¢9 1 —[32( 1= lt —|—1/)(1-\(a/2))—712
=1

To evaluate the marginal posterior distribution of as, we require :-

a%}—le—ﬁag(l—['ﬂa t az—1

(F(az))™

floalti, te, .. tn,) / ﬁwmw Lgm P2 lt’+y)d52

which gives :-

o ~le " (172, £:)™ T (aama + 0)
(T(ag))n2 (X2, t; + v)aenatod

f(a2|t1,t2, e 7tn2) XX

Now

f(a27 62|t17 t2a ceey tnz) = f(aQ, |t17 t27 v atn2)'f(ﬂ2|a27 tla t27 B th)

Therefore
f(CYQ, B2|t1, t2, ey tn2)
f(a27 |t17 t27 R tnz)

f(62|a27 tla t27 L 7tn2)'
Which, after some algebra gives us :-

e P2(S2 tiy) goana 0=l sims 4. 4 yama+0
['(agng + 0)

f(ﬁ2|a27t1,t2, . ,tn2) =

The above equation is a Gamma distribution whose parameters are asns + 6 and

12,t; + v so we can write :-

f(Balaz, t1,ta, .. ., tn,) = Dlaang + 0, 521t + v)
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The difficulty of sampling from a bivariate distribution, i.e. f(ag, 52|t1,...,tx) has

been circumvented by dividing the operation into two more manageable steps i.e.,

1. Sample ay from

a‘éj_le_liaz (H?il ti)a2_1F(a2n2 4 0)
(T(c))™2 (X012, t; + v)aenetd

f(a2|t1,t2,...,tn2) XX (19)

2. Sample Sy from

f(ﬁgl()ég, tl, tQ, e ,th) = F(OZQ?’LQ + 9, E?:zltl + l/)

Fortunately, the distribution in Equation 19 above is log-concave and so can be
sampled from the method already in use.
At each sweep of the Gibbs sampler, after the sample has been partitioned,

sampling proceeds as follows :-
e Sample p from B(¢ + ny, v + no)
e Sample £, from G(y 4 ny,d + X1=" t;)

e Sample ay from

o e (IT22, )2 "D (azns + 6)
(C(c))™2 (X024 t; + v)aenetd

f(Oé2|t1,t2, . ,th) X

e Sample S5 from

f(62|a27 tla t27 oo atn2) - P(a2n2 + 07 Eyiltl + l/)

Run Outcome

This particular run gave very encouraging results in that, for the first time in this
project, all criteria for a successful run were met. Data from this run are shown in

Figures 54, 55 and 56 together with Tables 29 and 30.

113



10,000 60,000
0 lterations

Figure 54: Raw outputs for the Gamma Exponential Model
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Figure 55: Marginal posterior distributions for the Gamma Exponential distribution

It can be seen from an examination of Figures 54, 55 and 56 together with Tables
29 and 30 that this run can be deemed a success and from this the inference can be
drawn that the methodology is appropriate. By way of checking this a second run

of the Gibbs sampler was carried out, identical to the previous one but using File 3
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Parameter | Posterior Mean | Posterior Variance
D 7.3492E-1 1.6472E-2
51 1.9690E-1 4.7319E-4
5o 1.0851 8.7516E-2
e 3.1374 7.8262E-2

Table 29: Posterior means and variances for the Gamma Exponential distribution

Parameter | Raw Output | Thinned output
P 1.0788E-2 2.0945E-2
b1 0.61886E-2 1.2017-2
Ba 1.3795E-2 1.2748E-2
Qs 0.72714E-2 1.8598E-2
Critical value | 1.3238E-2 2.9603E-2

Table 30: K-S values for the Gamma Exponential Distribution
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Figure 56: Model fit diagram

as the data file. This file represents a more congested stream of traffic than File 2.

7.9.5 Run outcome using File 3

A further run of the program was done using File 3 as the data file and details are
tabulated in Table 31. Also, for the sake of brevity, only the posterior histograms

and the model fit diagram will be shown here.
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Model Gamma Exponential
Constraint | E(Cy) > E(Cy)

Prior type | Mildly informative
Blocking Second component only
R.U.G.S. | First component only
Data file File 3

Table 31: Details of run using File 3
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Figure 57: Marginal posterior distributions for the Gamma Exponential distribution
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Figure 58: Model fit diagram

116



There are two interesting points that arise from this particular run.

1. Thinning did not prove to be necessary in this case since convergence was

achieved using raw output chains.

2. Although the posterior distributions are not perfectly symmetrical, their modes
were sufficiently close to their means so that these two quantities could be in-

terchanged with very little discernable difference to the model fit diagram.

7.10 Summary

The three models have been subjected to a high degree of scrutiny in this section
and, as a result, it is possible to draw firm conclusions regarding their suitability for
modelling headways. But before each model is considered separately, it has to be
stated that the Bayesian paradigm, and Gibbs sampling in particular, have proved

highly successful tools which can give valuable insights into model behaviour.

e The Griffiths & Hunt model would appear to be the wrong model for this
particular application. The usual problems of identifiability and slow mixing
can be overcome but model fit remains unacceptable. It was also shown how
Griffiths & Hunt obtained satisfactory results when using this model but their

method is, in the author’s opinion, unacceptable.

e The Schuhl model, although capable of reflecting the data in a much better
way than the Griffiths & Hunt model, has difficulties of its own which arise
from the discontinuity caused by the shift parameter, k£, whose marginal poste-
rior distribution can never be unimodal as required. Although the model may

be adequate for modelling light traffic flow its general use is not recommended.

e The Gamma \ Exponential distribution proposed by the author, proved
a more successful model than those previously considered. Identifiability and
slow mixing were overcome and good model fits were achieved both for light

and heavy traffic flows.
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It is now possible state the successful algorithm in diagrammatic form, as shown

in Figure 59.

Initial Prior
Conditions Distributions M Odel
N 7
Constraints
E(C,) > E(C,)

Gibbs

Sampler

(Blocking
+

R.U.G.S.)

Data "

Posterior :oh::r?:r
Distributions Distributions

Figure 59: The successful algorithm

Further description of each element of the diagram is given below :-

The model is a two component mixture of Gamma distributions with the first
component parameterised as an exponential distribution (i.e. a; = 1 and the second
such that as > 1.

Prior distributions are mildly informative except in the case of the parameter
p whose prior distribution is 5(1,1)

Initial conditions, or starting values, were found to have no effect on the
posterior distribution.

Constraints. The only constraint used was that E(C;) > E(Cy). Such a
constraint actually forms part of our prior beliefs concerning the model.

The data consited of two files, one representing fairly light traffic and the other
for more congested traffic. The model performed well with either.

We conclude, therfore, that the Gamma \ Exponential model is suitable for

modelling headways in both light and heavy traffic on dual carriageways.
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8 An examination of model behaviour via Bayesian

deviance

Introduction

In Section 7 the problems commonly associated with the use of mixture models
were described and, in the case of the Gamma / Exponential distibution, working
solutions that would enable the model to be used for modelling vehicle headways
were offered. These issues of identifiability, correlation and convergence have been
detailed and in this section an attempt will be made to detect and explain the
underlying cause of these phenomena.

In this section it will be shown that over parameterisation is an important factor
in mixture model behaviour and that dealing with this issue is relatively straight-
forward under the Bayesian paradigm.

The method by which this concept will be explored will be that of Bayesian

deviance.

8.1 Bayesian deviance

Let © be a vector of parameters, in the case of the Gamma/Exponential model, i.e.,

O = [p, 51752,042]T

and suppose that the model, denoted p(¢|©) is the subject of Gibbs sampling where
there are m observations, i.e., {t1,t2, ..., t;,. .., tm_1,tm}, and N iterations after the

initial burn-in. Now, let the quantity D be defined by :-

j=m

D= -2 logp(t|0) + 2log f ()

Jj=1
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where f(t) is a term that depends only on the data. Also let

N =N j=m 1
D= {—2 > logp(t;|©:) +210gf(t)} N

i=1

where ©; is the vector of parameters, ©, sampled at the ¢th iteration of the Gibbs

sampler. This gives :-

3 =N j=m
D= % : {Z -2y logp(tjl(%i)} + 2log f(t)
=1 j=1

Let © be the vector of parameter posterior means, i.e.,

0= [25,51,517072]T

where, for example,

Il
=

i
Di
1

o1
P=7x

-.
Il

and let

D(®) = 23" log p(,16) + 2log £ (1)

Jj=1
Spiegelhalter, Best and Carlin (1998) defined pp, the effective number of parameters,

as

PD=D—D(@)

i=N j=m
pp = % . {2 -2 Z logp(tj|@i)} + 2log f(t)
j=1

i=1

+ 2 logp(tj|©) — 2log f(t)

j=1
1 i=N j=m m _
= 5 2 22 logp(t;10:) ¢ +2 " logp(t;]0)
i=1 j=1 j=1

and, hence, the effective number of parameters can be calculated without the need

to evaluate the term 2log f(¢) (known as the saturated deviance). See also Spiegel-
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halter, Best, Carlin and van der Linde (2002). Also the quantity Dy can be defined
_ 1 [

Do=~ -
.

Do(©) = =23 log p(t;]0)

Jj=1

as

I
=

j=m
-2 Z logp(tj|@¢)}
=1

1 Jj=

-
Il

and similarly,

The following equation is now arrived at :-

Pp = ljo - Do(é)

The significance of the terms in the above equation is explained below :-

PD This has already been described as the effective
number of parameters and is, therefore, a

measure of model complexity.

Dy This term, clearly linked to the likelihood,
is a measure of model fit. It is the

expectation of the null deviance.

Dy(©) This is the null deviance evaluated at the

posterior parameter means.

The principles described above can be demonstrated by carrying out a number
of runs of the Gibbs sampler, using the Gamma / Exponential model, with dif-
ferent prior variances for the parameter a,. The parameters ; and [, are given
informative priors throughout the sequence of runs and this eliminates the need for
blocking and the use of R.U.G.S. More importantly though, the use of informative
prior distributions gives rise to approximately normal posterior ditributions. This

property of the posterior distributions is essential for the above theory to apply.
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In the following runs of the Gibbs sampler, the posterior distributions are as-
sumed to be close enough to being normal for these principles to hold although it
is acknowledged that cases can quite easily arise where this is not the case. This
assumption of normality would not be possible if, for example, the posterior mean
of the weighting parameter, p was close to either 1 or 0 and the sample size was
relatively small. For this reason, the data set File 2 was used in the runs of the
Gibbs sampler that follow. The prior distributions for the model parameters are set

out in Table 32

Parameter | Prior Distribution
P Uniform(0,1)
B x B e
Ba o B9 e v
o7 x ay te rP

Table 32: Parameter prior distributions

Table 33 shows the values of the parameters of these parameters.

Run No. | Prior parameter | Value
a w 3
a K 1
b w 9
b K 3
c w 24
¢ K 8
d w 75
d K 25
e w 240
e K 80
f w 300
f K 100

Table 33: Prior parameter values

Inspection of the above table reveals that the prior mean of a5 remains constant

at 3 for each run, but its prior variance is successively decreased. These are shown

in Table 34
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Run No. | Prior variance of as, Vy(as)
3
1
0.375
0.12
0.0375
0.0030

D0 |TH Y

Table 34: Prior variance of «y

The parameters ; and [y were given idential prior distributions and vy =6 =5
and v = w = 20.

Six runs of the Gibbs sampler were carried out using the Gamma/Exponential
distribution in a similar manner to that of the previous section but with the following

important difference :-

e The only deviation from the standard algorithm was the constraint that E(Cy) >
E(Cy). Blocking and R.U.G.S. were not used and their effect was compensated

for by the use of highly informative prior distributions.

The starting values, burn-in and sample size for the runs are the same as those

used in Section 7.

8.2 Run Outcomes

Posterior histograms relating to the first run of the Gibbs sampler (Run a) are shown
in Figure 60.

Whilst it can be seen that these posterior distributions are not exactly normal,
the results that follow do seem to indicate that the assumption is valid.

Quantities of interest for the six runs of the Gibbs sampler are tabulated in
Figure 35 | with the prior variance of ap being denoted by V(as).

Inspection of the above table reveals that the effective number of parameters,
pp, is a real number and not an integer as might reasonably be expected. This is

due to the “effectiveness” of three of the parameters being reduced by constraints
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Figure 60: Posterior histograms for the Gamma Exponential distribution

Run | Vp(as) Dy Pp
3.0 1006.43 | 3.77
1.0 1005.99 | 3.68
0.375 | 1005.77 | 3.29
0.12 1006.91 | 2.73
0.0375 | 1008.18 | 2.44
0.03 1008.29 | 2.39

O [0 | T

Table 35: Quantities of interest

imposed, mainly in the form of prior distributions, and so the effective number of
parameters is less than the actual number. In this case there are four parameters,
which we can denote by 7, and so it might be useful to define the degree of influence

of © as being

Nevertheless, in Figures 61 and 62 that follow pp will be used.
Figure 61 shows, perhaps unsurprisingly, that pp decreases as does the prior
variance of as. The relationship is not linear and pp assymptotically approaches a

value four although this value may never be reached due to the prior distributions
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Figure 61: Graph of Vy(az) v pp

given to 4, and 8. Whilst this graph contains, perhaps, few surprises the following
plot of pp against D is more revealing.

It is clear from Figure 62 that there exists a value of Pp for which there also
exists a minimum value of D. Since Pp is related to the prior variance of as, there
is also a value of Vj(ay) which minimises D. Since this latter quantity is a measure
of model fit it is clear that it is possible to constrain parameters beyond the point

of optimum model fit.

8.3 Summary

In this section Bayesian deviance has been used to demonstrate a link between
the effective number of parameters and model fit. It has been found that optimum
model fit occurred when the effective number of parameters took a non-integer value
below that of the actual number of model parameters. This appears to suggest that
instead of using a model with fewer parameters, it would be better to use informative
prior distributions and constrain the existing model which could be slightly over
parameterised. One drawback of the technique is, however, that autocorrelation is

stronger and the thinning factor needs to be greater for the sampler to pass the
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Figure 62: Graph of pp v D

convergence test.
In the next section another Bayesian method of checking model behaviour will

be proposed and examined.

126



9 Bayesian model comparison using posterior pre-

dictive datasets and Mahalanobis distance

Introduction

“Checking the model is crucial to statistical analysis”. This point, made by Carlin,
Rubin, Gelman & Stern (1995) would find acceptance with statisticians of both
persuasions but the controversy begins when the simple question “How?” is asked.
Under the Bayesian paradigm the question “Is the model true or false?” is not
asked. That is to say, no test is applied to the model such that, as a result of this
test, the model is deemed to either fit the data or not. A well known example of
this method is the x? test where observed and expected values are compared and,
as a result of the test, the model is either rejected or not.

Bayesian model checking, however, does not function in this absolute manner.
Rather, models or formulations of models and prior distributions are compared with
one another. A common example of this approach is the calculation of Bayes factors
or Likelihood ratios which can be explained as follows.

Suppose we have two fully specified models, M; and M, with parameter vectors
©; and O, respectively and a dataset, D. Now, let m; be the prior probability
that model 1 is correct and let my be similarly defined. We require the posterior
probability that model 1 is correct given the dataset, i.e. p(M;|D). By Bayes

Theorem :-
p(D[My).p(M;)
p(D)

where p(D|Mj) is the likelihood under model 1 which will be denoted by Ly, p(M)

p(My|D) =

is the prior probability of model 1, i.e. m; and p(D) is, by the theorem of total
probability, p(D|My).p(My) + p(D|Ms).p(Ms) which can be reduced to Ly +moLo.

If we now let the posterior probability of model 1 be denoted by p;, the following
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can be written :-
m Ly

= 7T1L1 +7T2L2

By similar reasoning the following relationship is also true :-

o Lo

P2 = m Ly + mo Lo

If we now define the posterior odds in favour of model 1 as the ratio of p; to p, then,

after some algebra, can be written :-

pr_m Ly

D2 Up) L,

The term 7L is known as the prior odds (in favour of model 1) and % is referred to
as the Likelihood ratio or Bayes factor.

The above explanation presupposes that the two models have already been esti-
mated. It is possible, however, to incorporate the calculation of Bayes factors into
Gibbs sampling but at this point computational difficulties arise.

Further descriptions of Bayes factor methodology are given by Kass & Raftery
(1995), Gelfand (1996) and Raftery (1996). In this project an alternative method
is proposed which fully exploits the posterior predictive distribution resulting from
the use of Gibbs sampling and is, therefore, fully Bayesian. The proposed method

is also computationally straightforward.

9.1 Background

The proposed method is for use where there is no alternative model depends upon

two points which are

1. The Gibbs sampler generates all credible parameter vectors for the model,
given the data. That is each f(¢|©;,t1,1t,...,t;) where, in this case, i €
{1..50,000} is a credible pd.f. given the data.
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2. The data is a sample, of size 7, from a p.d.f. with unknown parameter vector

or.

Suppose, for each i € {1..50,000}, a sample of size j were drawn from f(¢|0;, t1, to, . . .
it would then be possible to compare features of the data with the same features
of the samples. These samples, known as posterior predictive datasets, represent
all credible samples, of size j, that can be drawn from the model given the data.
This comparison would, in effect, show the extent to which the data differs from
all those samples that the model is capable of generating and so would be a mea-
sure of model fit. This approach is highly flexible since any feature of the data can
be chosen for comparison depending on the wishes of the modeller. For example,
comparing extreme values would demonstrate the models ability to accommodate

outlying values. Alternatively, specific intervals could be compared.

9.2 Implementation

In this project the following features will be used for comparison

1. The mean
2. The standard deviation
3. The coefficient of skew

4. The coefficient of pointedness or kurtosis

where the skew is defined by

and the kurtosis by

using standard notation.
The first four moments are used as features of comparison since this approach

provides a general method that could be used in any modelling situation.
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Figure 63: Posterior predictive datasets for Run 1

To illustrate this technique the actual dataset will be compared to posterior
predictive datasets resulting from two separate runs of the Gibbs sampler. Details

of the two runs are shown in Table 36.

Run 1 2

Model Gamma Exponential Gamma Exponential
Constraint | E(C}) > E(Cs) E(Cy) > E(Cy)
Prior type | Mildly informative Highly informative

Blocking Second component only | Not used
R.U.G.S. | First component only Not used
Data file File 2 File 2

Table 36: Details of Runs 1 and 2

Run 1 is detailed in Section 7 and Run 2 is referred to as Run C in Section 8.

For each run, the dataset mean, standard deviation, skew and kurtosis are com-
pared to those features of the 50,000 posterior predictive datasets initially by means
of two graphs. One graph is a plot of mean versus standard deviation for each
posterior predictive dataset and the other is the corresponding plot of skew versus
kurtosis.

Figure 63 refers to Run 1. The grey area is made up of 50,000 data points from
the posterior predictive datasets and the black cross represents the data point of the

actual dataset. It can be seen that the actual dataset point falls, on each graph,
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Figure 64: Posterior predictive datasets for Run 2

within the limits of the density formed by the posterior predictive datasets. This
seems to indicate that whilst the model fit is acceptable, it should be possible to
improve it.

Figure 64 refers to Run 2.

Here, it is clearly visible that the actual dataset point is closer to the centre of
the probability density in the case of the mean versus standard deviation graph.
There appears to be little, if any, difference in the skew versus kurtosis plot. From
this the inference could be drawn that Run 2 produced better model fit than Run
1. Having compared the two runs by examining graphs the obvious question to ask
would be “ Is there a numerical method by which we can quantify the differences
that have been observed?”

The answer is that the distance from the actual dataset point to the mean of
the joint posterior probability density of the mean, standard deviation, skew and
kurtosis of the posterior predictive datasets can be measured. This is a distance
in four dimensional space but the covariances and variances of the parameters are
taken into account by means of their covariance matrix and so the space in non-
Euclidian. What is, in fact, measured is the square of this distance which is called

Mahalanobis distance, D? (Mahalanobis, 1936).
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9.3 Mahalanobis distance (D?)
Notation

The following notation will be used in this section :-

Let S; be a sample of size j drawn from f(¢|©;,11,ts, ...

,t;) where f(t|O,t1,to,...,t;)

is the Gamma Exponential Distribution and i € {1..50,000}. Further notation is

shown in Table 37.

mo = data mean
do = data standard deviation
sop = data skew
ko = data kurtosis
the mean of the i sample

m = “<=—ie. the mean of all the m;’s.
d; = th standard deviation of the i sample
d

= , i.e. the mean of all the d;’s.
s; = the skeW of the i** sample

5= ;n’fl— i.e. the mean of all the s;’s.
k; = the kurtosis of the i sample
k= Li i.e. the mean of all the k;’s.

Table 37: Further notation

where, in this case, n = 50,000.

Mahalanobis distance, D?, is defined by

D*=X"VlX
where ) )
moy — m
v dy—d
Sop— S
ko — k

and V! is the inverse of the covariance matrix.
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For each of the two runs, Mahalanobis distance was computed and the results

are shown in Table 38.

Run 1 2
D? | 3.3975 | 0.53260

Table 38: The value of D? for Runs 1 & 2

A much smaller value of D? in the case of Run 2 confirms what was suggested

by comparison of the graphs.

9.4 Two important caveats
9.4.1 The use of D? in isolation

One particular run of the Gibbs sampler gave a value of 1.7373 for D?. This,
taken on its own would place the run between Runs 1 and 2 in terms of model fit.
However, the run in question was the base run for the G.E.D. model which, as shown
in Section 7, suffered from identifiability problems which manifested themselves in
the output of the parameter marginal posterior distributions which “jumped state”
several times during the course of sampling. This gave rise to bimodal distributions
and, if we examine the mean / standard deviation / skew / kurtosis graphs for this

run, bimodality can again be observed.
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Figure 65: Posterior predictive datasets where bimodality is present
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It is, therefore, recommended that this method should not be used as a single
tool for model analysis without reference to other methods. It can, however, be used
to compare competing modelling stratagies which are known to meet basic criteria

such as those set out in Section 7.

9.4.2 The sampling distribution of D?

It should be remembered that the y? distribution of D? is dependent on the variates
involved having normal distributions. This is not always the case as can be seen
from Figure 66 which shows a histogram of the skews of 50,000 posterior predictive

datasets.

Skew
{0..15}

Figure 66: An example of a non-normal marginal posterior distribution

If, however, the distributions had been normal in this case it would have been
appropriate to use the y? distribution with 4 degrees of freedom as a test. The
upper critical value at 95% is 9.488 so it can be seen that the values of Mahalanobis

distance tabulated in Table 38 fall within this range.

9.5 Summary

It has been shown that posterior predictive datasets can be useful for model com-
parison in two ways. Firstly, they can be used to construct graphs that give a clear
visual indication of model performance. Secondly they can provide, via Mahalanobis
distance, a numerical measure of model behaviour that is relatively straightforward
to implement and is not, to use the words of Wlodzimierz Bryc (1995) a “numerical
nuisance”. It must be remembered, however, that interpretation of the value of D?

is only only approximate due to the non-normality of the posterior distribution.
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10 Conclusion

10.1 Research questions

It was stated, in the Introduction to this thesis, that the primary area of interest was
the application of the Bayesian paradigm to vehicle headway modelling. This has
been a success, the extent of which can be judged from the answers to the research

questions which are set out below:-

10.1.1 The Bayesian paradigm

The first research question asked in Section 1 was “ Can we usefully apply the
Bayesian paradigm to inferences about these models?” Here, the object was to
determine not only if the Bayesian paradigm could be applied but also if there was
any advantage to this approach. It is now clear that these models can be made the
subject of Bayesian inference and that there are definite advantages to be gained by

using this methodology. Among these are
e Explicit use of prior belief
e Proper handling of uncertainty
e Usefulness of posterior predictive datasets

One interesting advantage afforded by the methods used is what might be called
“transparency”. The nature of Gibbs sampling is such that, for example, actual
output traces of the model parameters can be plotted and examined as can marginal
posterior distribution histograms. It is also possible and, in fact, necessary to plot
the output of one parameter against another to look for correlation or against itself
(with lag) to detect autocorrelation. In effect, every step of the process of analysis
is open to scrutiny with the only limit being the desire of the individual statistician.

This property will be utilised in one of the suggestions for further research.
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10.1.2 Model suitability

Secondly, the question was asked “Are these models appropriate?” or, more accu-
rately, “Are these models appropriate for the datasets considered in this thesis?” In
the case of the two models found in the literature the answer is “No”. The double
displaced exponential distribution, as proposed and analysed by Griffiths & Hunt
(1991), is only successful when observed headways less than half a second are ig-
nored, with their presence being attributed to “trigger happy” observers. Under the
Bayesian paradigm model fit appears to be a problem for which no remedy can be
found, the most likely reason for this being incorrect model choice given the data.

Whilst Salter (1974) has achieved some success with the double exponential
headway distribution model, under the Bayesian paradigm the behaviour of the
shift parameter, k, is highly problematic in that its marginal posterior distribution
was always multimodal. Since the property of having a unimodal marginal posterior
distribution was laid down as one of the criteria for a successful run of the Gibbs
sampler this model cannot be used. This criteria would also exclude any other model
that contained a discontinutity.

The Gamma Exponential model, proposed by the author, has been shown to be
useful for modelling headways. The usual difficulties associated with Gibbs sampling

are encountered (see 10.1.3 below) but can be overcome.

10.1.3 Problems associated with the Bayesian paradigm

The third research question was “ What problems arise when the Bayesian paradigm
1s applied ?” and in Section 2 it was shown how computational difficulties can
arise in Bayesian statistics. Having chosen Gibbs sampling as the computational
algorithm, there are still difficulties to overcome. The problem of identifiability,
ever present in the case of mixture models, can be overcome by placing constraints
on the model. These constraints form part of the prior beliefs concerning the model

and its parameters.
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The issues of correlation and convergence are far from independent of each other.
Whilst mixture models are notoriously slow in mixing, i.e. the sampler is slow to
move thoroughout the support of the posterior distribution, autocorrelation has the
effect of misleading the experimenter into believeing that output chains have not
converged when, in fact, the opposite is sometimes true. The technique of thinning
counters autocorrelation and has the advantage of great simplicity over reparameter-
isation methods which, by means of some appropriate algebraic transform, change

the shape of the posterior distribution.

10.1.4 The Bayesian paradigm and highway engineers

The final question, “ Is the routine use of these models feasible in highway engi-
neering?” has only been answered in part by this thesis. The gamma exponential
model has been shown to be a suitable model. It fits the data, is flexible, and a
reliable method of fitting has been developed. There still remains, however, work to
be done in terms of producing a methodology or modelling algorithm that could be

conveniently used by highway engineers.

10.2 Further research

There are four areas which, if taken further, would benefit mixture modelling in

general and headway modelling in particular.
1. Model refinement
2. A methodology for highway engineers
3. Further work on mixture models

4. A convergence / correlation analysis tool

10.2.1 Model refinement

There are two areas for consideration here :-
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1. A model for single carriageway use
2. The non-independence of headways

The model proposed by Griffiths & Hunt has been found to be unsuitable for mod-
elling headways on single carriageway roads. Since this model was the only one
examined for use in this way a suitable alternative must be sought. One important
point to be considered in proposing an alternative is the fact that very short head-
ways can be very rare in single streams of traffic, e.g. when only one direction of flow
is being considered on a single carriageway road. Having observed the behaviour
of the shift parameter, k, in the double displaced headway model it is not consid-
ered appropriate to use any mixture distribution that has such a shift parameter.
This points towards the use of either a single component model or a two component
model where one component is capable of handling these very short headways.

The work done in this thesis has been carried out under the assumption that
headways are independent of each other. However, the more congestion present in
a stream of traffic the more this assumption could be called into question. One
avenue of research that should be followed is to determine the suitablity of using a
Hidden Markov Model. Here a Gamma / Exponential distribution is used as before
but the modelling process is complicated the fact the allocation of a particular
observation, t;, at a given sweep of the Gibbs sampler, say ¢, is dependendent on
the allocation of the previous observation, ¢;_; and on the next one, ¢;,;, which will
have been allocated to a component at the previous sweep. This seems, at first,
to be counterintuitive but if an example is considered from the investigation of a
genetic disorder, say haemophilia, the apparent problem can be resolved.

Grandfather
)

Father

!

Son

Figure 67: Direction of inferences in a genetic investigation
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Suppose we wish to make inferences concerning the individual labelled “Father”
in Figure 67. If data were available for the Grandfather, then we would be able
to draw inferences concerning the Father. The same is true if data were available
concerning only the Son. If, however, data were available concerning both Grand-
father and Son, then inferences concerning the Father would be more robust since
there would be more information upon which to base them. The same principle
holds when we come to allocate the observation ¢; and we can redraw Figure 67 to

illustrate this.

i1

Figure 68: Direction of inferences in observation allocation

Given the reasoning above and by reference to Figure 68 it can be seen that, if
there is data concerning the allocation of observations ¢;_; and ¢;;,, then inferences
concerning the allocation of ¢; will be more accurate. In practice, this gives rise
to much more complicated calculation of allocation probabilities and there is also
a transition matrix to be dealt with. All of this means that the application of a

Hidden Markov Model is a considerable project in itself.

10.2.2 A methodolgy for highway engineers

Given that a suitable model can be found for use on single carriageway roads, the
modelling process still needs to be modified in such a way that it is readily accessi-
ble to highway engineers. In practice this means that certain areas will need to be
“hidden”, .i.e. it would not be required of the highway engineer to specify prior dis-
tributions or their parameter values from scratch without help. This could be done
indirectly by asking the highway engineer to specify likely rates of traffic flow. The
same principle applies to convergence diagnosis and it is envisaged that routines for

the assessment of convergence could be appended onto the Gibbs sampling software.
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That is to say, convergence diagnosis could be automated with appropriate messages
being displayed if problens were encountered. There is clearly much to be done in

this area, mainly in the field of elicitation, but its important cannot overemphasised.

10.2.3 Further work on mixture models

An important point to come out of this project is the crucial role of the allocation
step in the Gibbs sampling algorithm. One possible area of research would be to
look closer at this step and, possibly, see if there is any benefit from “tracking” an
observation (or group of observations) to monitor which component it is allocated
to as sampling progresses. From a computational point of view this would not be
difficult and it may be possible to numerically investigate the effect of the well
documented “trapping states” that occur. This could lead to improved convergence

diagnostics.

10.2.4 A convergence / correlation analysis tool

As the work involved with this thesis progressed it became necessary to write var-
ious computer programs. The first requirement was for a Gibbs sampler. It then
became clear that a convergence diagnostic was required and after that the need for
a thinning program emerged. All these programs proved invaluable but they were
all written separately as the need arose. It would be advantageous, to practitioners
of Gibbs sampling, if a program were available that could readily assess the conver-
gence and correlation properties of output chains both numerically and graphically.
Such a program could be written without the addition any new routines. The nec-
essary procedures and functions already exist but in different programs. The task
would be more of a collation exercise than writing a completely new program. The

program would have two main advantages over currently available diagnostics :-

1. It would be a stand-alone program. There would be no need use the program

in conjunction with any other program or package.
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2. The convergence diagnostic can be used on any form of marginal posterior

distribution.

Although much has been achieved in this project there remains enormous scope
for further research and it would be appropriate to end by quoting Thompson (1995)

who said “Research never ends”.
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12 Appendix

12.1 1 Source code listing : headwl.c : data collection pro-

gram

The program listed below was used to collected headway data and is referred to in

Section 6.

#include "c:\pcc\headers\stdio.h"

char data, *buffer;
long ticks;
int n;

FILE *fp;

int main()
{
n=0;
scr_setup();
puts("Enter name of data file to be created >>>");
gets(buffer);

fp = fopen(buffer, "w");

while( (data = scr_csts()) != 32)

puts("Timing has started\n");
while( (data = scr_csts()) != 17)
{

tone(0, 1);
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ticks++;

if ( data == 32)

{
n++;
printf("%6.2f secs : total headways read %d\n", ticks/18.5, n);
fprintf (fp, "%6.2f\n", ticks/18.5);
ticks = 0;
}
}
fclose(fp);
exit(0);

12.2 Source code listing : A typical sampling routine

The Pascal function listed below returns a single value from the Beta distribution

with parameters o and 5.

function betasim(alpha, beta: extended) :Real;
Lotk ok o ok sk ok ok ok o o o ok sk sk ok ok o ok o o o ok ok sk sk sk ok ok o o o ok sk ok sk ok ok ok ok o ok sk sk sk ok ok ok o o ok ok ok sk ok ok ok ok ok
{This function returns one value simulated from Beta(alpha, beta,)}

{***********************************************************************}

type
ordinates = record
X : extended;
y : extended;
grad : extended;

end;
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type

envelopes = record

x1 : extended;
x2 . extended;
m . extended;
C : extended;
area : extended;
cumarea : extended;

end;
var
totarea, I : extended;
P, 4, T, 8, t, u : extended;
wl, w2, w3, xrexp, k : extended;
a, b, ¢ : extended;
ordarray : arrayl[1l..3] of ordinates;
envarray : array[l..3] of envelopes;
1_accept : Boolean;

counterl, counter2, x, y : integer;

begin {The simulation}

{initialise & check where necessary, variables}

a := alpha;

b := beta;

¢ := min(lptbeta(0.999, a, b, 0.0), lptbeta(1.0/100.0, a, b, 0.0));
¢ := abs(c) ;
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totarea := 0.0;

ordarray[1].x := 0.5%(a - 1.0)/(a + b - 2.0);

ordarray[2].x := (a - 1.0)/(a + b - 2.0);

ordarray[3].x := 0.5%(1 + (a - 1.0)/(a + b - 2.0));
{initialise remainder of ORDARRAY}
for counter2 := 1 to 3 do

begin

ordarray[counter2] .y := lptbeta(ordarrayl[counter2].x,
a, b, ¢);
ordarray[counter2] .grad := grlptbet(ordarray[counter?].x,
a, b);
end;
ordarray[2].grad := 0.0;
{ORDARRAY initialised}

{initialise ENVARRAY}

envarray[1].x1 0.0;

envarray[3].x2 := 1.0;
for counter2 := 2 to 3 do
begin
p := ordarrayl[counter2].y;
q := ordarrayl[counter2 - 1].y;
r := ordarrayl[counter2].x;
s := ordarrayl[counter?2].grad;
t := ordarraylcounter2 - 1].x;
u := ordarrayl[counter2 - 1].grad;

envarray[counter2 - 1].x2 := ((p-q) - (r*s) + (t*uw))/(u - 8);
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envarray[counter2] .x1 := envarrayl[counter2 - 1].x2;

end;
for counter2 := 1 to 3 do
begin
envarray[counter2] .m := ordarray[counter2].grad;
envarray[counter2] .c := ordarraylcounter2].y
- ordarrayl[counter2] .x
xordarray[counter?2] .grad;
envarray[counter2] .area := envarea(envarray[counter2].x1,

envarray [counter2] .x2,
envarray [counter2] .m,

envarray[counter2] .c) ;

if counter2 < 2 then

envarray [counter2] .cumarea envarray[counter2] .area

else

envarray [counter2] . cumarea envarray[counter2] .area
+ envarray[counter2 - 1].cumarea;

end;

totarea := envarrayl[3].cumarea;
1_accept := False;
while not 1_accept do

begin {while not 1l_accept}

wl random;

w2

wl;
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wl := wlxtotarea;
counter2 := 1;
while envarray[counter2].cumarea < wl do

counter?2 := counter2 + 1;

if counter2 = 1 then

I :=wl
else
I := wl - envarrayl[counter2 - 1].cumarea;

if envarrayl[counter2].m = 0.0 then

begin
p := exp(envarrayl[counter2].c);
q := envarrayl[counter2] .x1;

xrexp := (I/p)+q;

end
else
begin
p := exp(envarray[counter2].c);
q := envarrayl[counter2].m;
r := envarrayl[counter2].xl;
S = TI*q;
t := exp(s);

xrexp := (1.0/@)*1n((g*I/p) + t);

end;
p := lptbeta(xrexp,a, b, c);
q := envarrayl[counter2].m;
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r := envarray[counter2].c;
S := Q*Xrexp + r;

t := exp(p - 8);

w3 := random;

if w3 <= t then

begin
1_accept := true;
betasim := xrexp;
end;

end; {while not 1l_accept}

end; {The betasim function}

The function was used for sampling a value from the marginal posterior distribution
of the weighting parameter, p, a typical example of which can be found in Section

5.5.1. The following line of Pascal source code shows how the function is called :-

psimv := betasim((nl + phi), (n2 + psi));

12.3 Additional runs of the Gibbs sampler

Those runs of the Gibbs sampler that are documented in Section 7 are obviously
considered essential to the main objective of this thesis. Other runs were, however,
carried out and some are documented here. Because of what might be termed their
“secondary” importance the details presented here are only intended to give an

outline of model performance under the given conditions.

12.3.1 Making the Griffiths & Hunt model “work”

This run of the sampler was exactly the same as the final run for this model as in

Section 7 but in this case every observation less than 2 seconds was deleted from the
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data file used. Also, more informative priors for 5, and 3; were used. The purpose
of this was to mimic the strategy of Griffiths & Hunt and see if a better model
fit could be achieved. Figure 69 shows the marginal posterior distributions for the

model parameters for this run.

p
{0..1}

Beta 1
{0..0.4}

Beta 2
{0..1.5}

{0..2}

Figure 69: marginal posterior distributions for the Griffths & Hunt model

From Figure 69 it can be observed that all marginal posterior distributions are
unimodal. However, the use of informative priors merely served to increase auto-
correlation with a corresponding reduction in the rate of mixing. Model fit, though,
was noticeably improved. This is shown in Figure 70 although it must be pointed
out that there is still some way to go before the model/data fit could be described
as good. It is, therefore, believed that this run of the Gibbs sampler confirms the

explanation given in Section 7 of the apparent success of the Griffiths & Hunt model.
12.3.2 Simulated data : Run 1 : Data simulated from an exponential
distribution

In order to assess how the Gamma/Exponential distribution would perform in con-

ditions of totally free-flowing traffic, a file containing 200 observations was used with
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Figure 70: Model fit diagram for the Griffths & Hunt model

each observation being simulated from an exponential distribution whose parameter
was (.25. Prior distributions etc were the same as those used for the last run of the
Gibbs sampler for this model in Section 7.

Figure 71 shows the marginal posterior distributions which can all be seen to
be unimodal. Also, it can be observed from the parameter, p, that the sampler has
coped well with data that would always be expected to be allocated to the first
component, with the modal value of p being 0.982 (3 d.p.). This is encouraging.

The run passed the test for convergence after thinning was applied and model
fit is quite satifactory as shown in Figure 72 As already stated, marginal posterior
means were used in model fit diagram. If posterior modes were used then model fit
is slightly better. This gives rise to the question as to whether posterior modes or
posterior means should be used in such circumstances. This raises other questions
that are fairly central to Bayesian statistics and the choice is, perhaps, best left to
the individual practitioner although, as is often the case, practicality rather than

philosophy may be the deciding factor.
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Figure 71: marginal posterior distributions for the Gamma Exponential distribution

0.25

. M Data File
02 - E Model

Figure 72: Model fit diagram for the Gamma Exponential distribution

12.3.3 Simulated data : Run 2 : Data simulated from an gamma distri-

bution

Here, it required to examine model behaviour under conditions of heavily congested
flow and so a file of observations simulated from a gamma distribution has been

created. In this case we would expect a posterior value of p to be slightly greater
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than zero and this is, in fact, the case with the posterior mean for p being 0.0366 (4
d.p.). Figure 73 shows the marginal posterior distributions for this run and all are

unimodal.

n...

1.

Beta 1
{0..1.5}

Beta 2
{0..4}

Alpha 2
{0..5}

Figure 73: marginal posterior distributions for the Gamma Exponential distribution

Convergence was satisfactory but it is noted that less thinning was required in
order for the convergence test to be passed. So far, it appears that the convergence
properties of the model are better when more congested traffic is modelled. This may
be because, under such conditions, more observations are allocated to component 2
but to date this phenomenom has not been rigourously examined. Figure 74 shows
the model fit diagram for this run.

Again, model fit can be seen to be satisfactory. Given this, and the other results
from this run, we see that the model has performed well with data corresponding to
congested traffic.

When both the above runs are considered, along those where real data was
used, it can be seen that results are very encouraging. The Gamma / Exponential
distribution has emerged as a suitable model for use with vehicle headways on dual

carriageway roads.
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Figure 74: Model fit diagram for the Gamma Exponential distribution
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